Keys | Fields |
---|---|
Author | Subham Das |
Project | Facial Recognition |
Project Name | Project FRAGD |
Technology | OpenCV |
Cost | None |
Version | v2 |
Last updated | 12 Aug, 2021 |
In this repo, I am using OpenCV to perform face recognition. To build this face recognition system, I first perform face detection, extract face embeddings from each face using deep learning, train a face recognition model on the embeddings, and then finally recognize faces in both images and video streams with OpenCV.
Download models from
Gender Net : https://www.dropbox.com/s/iyv483wz7ztr9gh/gender_net.caffemodel?dl=0"
Age Net : https://www.dropbox.com/s/xfb20y596869vbb/age_net.caffemodel?dl=0"
Openface : https://storage.cmusatyalab.org/openface-models/nn4.small2.v1.t7
Step#0 - Run face_capture.py to store your face image inside dataset. Maximum run for 5 seconds and press q to quit.
python face_capture.py --name <your_first_name>
python extract_embeddings.py --dataset dataset --embeddings output/embeddings.pickle --detector face_detection_model --embedding-model openface_nn4.small2.v1.t7
Step#2 - The Linear SVM model will be trained by this script in Step #2. We’ll detect faces, extract embeddings, and fit our SVM model to the embeddings data.
python train_model.py --embeddings output/embeddings.pickle --recognizer output/recognizer.pickle --le output/le.pickle
python face_gender_age_recognize.py --detector face_detection_model --embedding-model openface_nn4.small2.v1.t7 --recognizer output/recognizer.pickle --le output/le.pickle
email: dsubham776@gmail.com
Never forget to give your opinion, review and suggestion. Have a nice day!