gotch
creates a thin wrapper to Pytorch C++ APIs (Libtorch) to make use of its already optimized C++ tensor APIs (3039) and dynamic graph computation with CUDA support and provides idiomatic Go APIs for developing and implementing Deep Learning in Go.
Some features are
- Comprehensive Pytorch tensor APIs (2525)
- Fully featured Pytorch dynamic graph computation
- JIT interface to run model trained/saved using PyTorch Python API
- Load pretrained Pytorch models and run inference
- Pure Go APIs to build and train neural network models with both CPU and GPU support
- Most recent image models
- NLP Language models - Transformer in separate package built with gotch and pure Go Tokenizer.
gotch
is in active development mode and may have API breaking changes. Feel free to pull request, report issues or discuss any concerns. All contributions are welcome.
gotch
current version is v0.9.1
- Libtorch C++ v2.1.0 library of Pytorch
- Clang-17/Clang++-17 compilers
- Default CUDA version is
11.8
if CUDA is available otherwise using CPU version. - Default Pytorch C++ API version is
2.1.0
NOTE: libtorch
will be installed at /usr/local/lib
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-libtorch.sh
chmod +x setup-libtorch.sh
export CUDA_VER=cpu && bash setup-libtorch.sh
Update Environment: in Debian/Ubuntu, add/update the following lines to .bashrc
file
export GOTCH_LIBTORCH="/usr/local/lib/libtorch"
export LIBRARY_PATH="$LIBRARY_PATH:$GOTCH_LIBTORCH/lib"
export CPATH="$CPATH:$GOTCH_LIBTORCH/lib:$GOTCH_LIBTORCH/include:$GOTCH_LIBTORCH/include/torch/csrc/api/include"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$GOTCH_LIBTORCH/lib"
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-gotch.sh
chmod +x setup-gotch.sh
export CUDA_VER=cpu && export GOTCH_VER=v0.9.1 && bash setup-gotch.sh
NOTE: make sure your machine has working CUDA.
- Check version:
nvidia-smi
- Install nvidia driver here
- Install CUDA here
- Install CuDNN here
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-libtorch.sh
chmod +x setup-libtorch.sh
export CUDA_VER=11.8 && bash setup-libtorch.sh
Update Environment: in Debian/Ubuntu, add/update the following lines to .bashrc
file
export GOTCH_LIBTORCH="/usr/local/lib/libtorch"
export LIBRARY_PATH="$LIBRARY_PATH:$GOTCH_LIBTORCH/lib"
export CPATH="$CPATH:$GOTCH_LIBTORCH/lib:$GOTCH_LIBTORCH/include:$GOTCH_LIBTORCH/include/torch/csrc/api/include"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$GOTCH_LIBTORCH/lib:/usr/lib64-nvidia:/usr/local/cuda-${CUDA_VERSION}/lib64"
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-gotch.sh
chmod +x setup-gotch.sh
export CUDA_VER=11.8 && export GOTCH_VER=v0.9.1 && bash setup-gotch.sh
import (
"fmt"
"github.com/sugarme/gotch"
"github.com/sugarme/gotch/ts"
)
func basicOps() {
xs := ts.MustRand([]int64{3, 5, 6}, gotch.Float, gotch.CPU)
fmt.Printf("%8.3f\n", xs)
fmt.Printf("%i", xs)
/*
(1,.,.) =
0.391 0.055 0.638 0.514 0.757 0.446
0.817 0.075 0.437 0.452 0.077 0.492
0.504 0.945 0.863 0.243 0.254 0.640
0.850 0.132 0.763 0.572 0.216 0.116
0.410 0.660 0.156 0.336 0.885 0.391
(2,.,.) =
0.952 0.731 0.380 0.390 0.374 0.001
0.455 0.142 0.088 0.039 0.862 0.939
0.621 0.198 0.728 0.914 0.168 0.057
0.655 0.231 0.680 0.069 0.803 0.243
0.853 0.729 0.983 0.534 0.749 0.624
(3,.,.) =
0.734 0.447 0.914 0.956 0.269 0.000
0.427 0.034 0.477 0.535 0.440 0.972
0.407 0.945 0.099 0.184 0.778 0.058
0.482 0.996 0.085 0.605 0.282 0.671
0.887 0.029 0.005 0.216 0.354 0.262
TENSOR INFO:
Shape: [3 5 6]
DType: float32
Device: {CPU 1}
Defined: true
*/
// Basic tensor operations
ts1 := ts.MustArange(ts.IntScalar(6), gotch.Int64, gotch.CPU).MustView([]int64{2, 3}, true)
defer ts1.MustDrop()
ts2 := ts.MustOnes([]int64{3, 4}, gotch.Int64, gotch.CPU)
defer ts2.MustDrop()
mul := ts1.MustMatmul(ts2, false)
defer mul.MustDrop()
fmt.Printf("ts1:\n%2d", ts1)
fmt.Printf("ts2:\n%2d", ts2)
fmt.Printf("mul tensor (ts1 x ts2):\n%2d", mul)
/*
ts1:
0 1 2
3 4 5
ts2:
1 1 1 1
1 1 1 1
1 1 1 1
mul tensor (ts1 x ts2):
3 3 3 3
12 12 12 12
*/
// In-place operation
ts3 := ts.MustOnes([]int64{2, 3}, gotch.Float, gotch.CPU)
fmt.Printf("Before:\n%v", ts3)
ts3.MustAddScalar_(ts.FloatScalar(2.0))
fmt.Printf("After (ts3 + 2.0):\n%v", ts3)
/*
Before:
1 1 1
1 1 1
After (ts3 + 2.0):
3 3 3
3 3 3
*/
}
import (
"fmt"
"github.com/sugarme/gotch"
"github.com/sugarme/gotch/nn"
"github.com/sugarme/gotch/ts"
)
type Net struct {
conv1 *nn.Conv2D
conv2 *nn.Conv2D
fc *nn.Linear
}
func newNet(vs *nn.Path) *Net {
conv1 := nn.NewConv2D(vs, 1, 16, 2, nn.DefaultConv2DConfig())
conv2 := nn.NewConv2D(vs, 16, 10, 2, nn.DefaultConv2DConfig())
fc := nn.NewLinear(vs, 10, 10, nn.DefaultLinearConfig())
return &Net{
conv1,
conv2,
fc,
}
}
func (n Net) ForwardT(xs *ts.Tensor, train bool) *ts.Tensor {
xs = xs.MustView([]int64{-1, 1, 8, 8}, false)
outC1 := xs.Apply(n.conv1)
outMP1 := outC1.MaxPool2DDefault(2, true)
defer outMP1.MustDrop()
outC2 := outMP1.Apply(n.conv2)
outMP2 := outC2.MaxPool2DDefault(2, true)
outView2 := outMP2.MustView([]int64{-1, 10}, true)
defer outView2.MustDrop()
outFC := outView2.Apply(n.fc)
return outFC.MustRelu(true)
}
func main() {
vs := nn.NewVarStore(gotch.CPU)
net := newNet(vs.Root())
xs := ts.MustOnes([]int64{8, 8}, gotch.Float, gotch.CPU)
logits := net.ForwardT(xs, false)
fmt.Printf("Logits: %0.3f", logits)
}
//Logits: 0.000 0.000 0.000 0.225 0.321 0.147 0.000 0.207 0.000 0.000
- Tensor Initiation
- Tensor Indexing
- MNIST
- YOLO v3 model infering
- RNN model training
- CIFAR model training
- JIT ResNet18 Torch Script model load and inference
- Neural style transfer
- Image pretrained models - inference
- Translation
- Convert Pytorch Python model to Go
- Load Python Pytorch JIT model then train/finetune in Go
- Image augmentation
- See pkg.go.dev for APIs detail.
gotch
is Apache 2.0 licensed.
- This project has been inspired and used many concepts from tch-rs Libtorch Rust binding.