Skip to content

Implementation of FeedForward Networks using python and numpy

Notifications You must be signed in to change notification settings

svkatta/PyFeedForward

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

PyFeedforward

Python Implementation of Feed Forward Neural Networks using Numpy

Usage

python train.py <options>

Options

Architecture

  • --num_hidden : number of hidden layers
  • --sizes : comma separated list for the size of each hidden layer
  • --activation : the choice of activation function - valid values are :sigmoid, cross_entropy_softmax, tanh, softmax
  • --PCA : no of pca componets to be selected, PCA is performed on input data before feeding to Neural Network

Training

  • --lr : initial learning rate for gradient descent based algorithms
  • --momentum : momentum to be used by momentum based algorithms
  • --loss : loss function to use while traning, supports : cross_entropy[ce], squared error[sq]
  • --opt : the optimization algorithm to be used: gd, momentum, nag, adam
  • --batch_size : the batch size to be used - valid values are 1 and multiples of 5
  • --epochs : number of passes over the data
  • --anneal : if true the algorithm should halve the learning rate if at any epoch the validation error increases and then restart that epoch
  • --pretrain : Flag to use pre train model

Data and Model

  • --save_dir: the directory in which the pickled model should be saved
  • --expt_dir: the directory in which the log files will be saved
  • --train : path to the training dataset
  • --val : path to the validation dataset
  • --test : path to the test dataset

Others

  • --testing : Flag to test model
  • --logs : Flag to either write logs into a file or not

Example Usage : python train.py --lr 0.01 --momentum 0.9 --num_hidden 2 --sizes 240,240 --activation sigmoid --loss ce --opt adam --batch_size 20 --epochs 20 --anneal True --save_dir ../save_dir/best/ --expt_dir ../expt_dir/ --train train.csv --val valid.csv --test test.csv --pretrain False --state 20 --testing False--logs False --PCA 40

About

Implementation of FeedForward Networks using python and numpy

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published