Skip to content

tedhuang96/nirrt_star

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NIRRT*

This is the implementation of Neural Informed RRT* (NIRRT*), which is the algorithm in our ICRA 2024 paper

Neural Informed RRT*: Learning-based Path Planning with Point Cloud State Representations under Admissible Ellipsoidal Constraints

[Paper] [arXiv] [Main GitHub Repo] [Robot Demo GitHub Repo] [Project Google Sites] [Presentation on YouTube] [Robot Demo on YouTube]

All code was developed and tested on Ubuntu 20.04 with CUDA 12.0, conda 23.11.0, Python 3.9.0, and PyTorch 2.0.1. We also offer implmentations on RRT*, Informed RRT*, and Neural RRT* as baselines.

Citation

If you find this repo useful, please cite

@inproceedings{huang2024neural,
  title={Neural Informed RRT*: Learning-based Path Planning with Point Cloud State Representations under Admissible Ellipsoidal Constraints},
  author={Huang, Zhe and Chen, Hongyu and Pohovey, John and Driggs-Campbell, Katherine},
  booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={8742--8748},
  year={2024},
  organization={IEEE}
}

Setup

Run

conda env create -f environment.yml

which is recommended. Or run

conda create -n pngenv python=3.9.0
conda activate pngenv
pip install numpy==1.25.0
pip install pyyaml
pip install matplotlib
pip install opencv-python
pip install torch==2.0.1
pip install torchvision==0.15.2
pip install open3d==0.17.0

Quick Test

Data for ICRA 2024

Download nirrt_star-icra24-data.zip and move the zip file into the root folder of this repo. Run

cd nirrt_star/
unzip nirrt_star-icra24-data.zip

Model Weights for ICRA 2024

Download nirrt_star-icra24-model-weights.zip and move the zip file into the root folder of this repo. Run

cd nirrt_star/
unzip nirrt_star-icra24-model-weights.zip

Evaluation for ICRA 2024

Download nirrt_star-icra24-evaluation.zip and move the zip file into the root folder of this repo. Run

cd nirrt_star/
unzip nirrt_star-icra24-evaluation.zip

Visualize 2D Random World samples

  • For example, to visualize a 2D Random World test sample with token 100_2, which means env_idx = 100, start_goal_idx = 2, run
conda activate pngenv
python visualize_data_samples_2d.py --visual_example_token 100_2

Check out images in visualization/img_with_labels_2d/.

  • To visualize all 2D Random World test samples, run
conda activate pngenv
python visualize_data_samples_2d.py

Planning Demo

  • For 2D, run
conda activate pngenv
python demo_planning_2d.py -p nirrt_star -n pointnet2 -c bfs --problem {2D_problem_type} --iter_max 500
python demo_planning_2d.py -p nrrt_star -n unet --problem {2D_problem_type} --iter_max 500
python demo_planning_2d.py -p nrrt_star -n pointnet2 --problem {2D_problem_type} --iter_max 500
python demo_planning_2d.py -p irrt_star --problem {2D_problem_type} --iter_max 500
python demo_planning_2d.py -p rrt_star --problem {2D_problem_type} --iter_max 500

where {2D_problem_type} can be random_2d, block, or gap. Note unet cannot be used for block, as unet requires img_height % 32 == 0 and img_width % 32 == 0, while block may change the environment range randomly and does not meet this requirements. Visualizations can be found in visualization/planning_demo/.

  • For 3D, run
conda activate pngenv
python demo_planning_3d.py -p nirrt_star -n pointnet2 -c bfs --problem random_3d --iter_max 500
python demo_planning_3d.py -p nrrt_star -n unet --problem random_3d --iter_max 500
python demo_planning_3d.py -p nrrt_star -n pointnet2 --problem random_3d --iter_max 500
python demo_planning_3d.py -p irrt_star --problem random_3d --iter_max 500
python demo_planning_3d.py -p rrt_star --problem random_3d --iter_max 500

Visualization will be in GUI.

Visualizations in ICRA 2024 Paper

If you run Result Analysis with the downloaded evaluation, check visualization/evaluation/ and you will find the images used in Fig. 5 of NIRRT* ICRA 2024 paper.

Data Collection

Instructions for collecting your own data.

Collect 2D random world data

conda activate pngenv
python generate_random_world_env_2d.py
python generate_random_world_env_2d_point_cloud.py

Collect 3D random world data

conda activate pngenv
python generate_random_world_env_3d_raw.py
python generate_random_world_env_3d_astar_labels.py
python generate_random_world_env_3d_point_cloud.py

Generate block and gap environment configurations

conda activate pngenv
python generate_block_gap_env_2d.py

Model Training

Instructions for collecting your own models.

Training and Evaluation of PointNet++

To train and evaluate PointNet++ for guidance state inference, run

conda activate pngenv
python train_pointnet_pointnet2.py --random_seed 100 --model pointnet2 --dim 2
python eval_pointnet_pointnet2.py --random_seed 100 --model pointnet2 --dim 2
python train_pointnet_pointnet2.py --random_seed 100 --model pointnet2 --dim 3
python eval_pointnet_pointnet2.py --random_seed 100 --model pointnet2 --dim 3

If you want to train PointNet, you can replace --model pointnet2 with --model pointnet. Note that results/model_training/pointnet2_2d/checkpoints/best_pointnet2_2d.pth is equivalent as the pointnet2_sem_seg_msg_pathplan.pth you will be putting in PNGNav if you are going to deploy NIRRT* in ROS for your robot applications.

Training and Evaluation of U-Net

conda activate pngenv
python train_unet.py
python eval_unet.py

Evaluation of Planning Methods

2D

Run

conda activate pngenv
python eval_planning_2d.py -p nirrt_star -n pointnet2 -c bfs --problem {2D_problem_type} 
python eval_planning_2d.py -p nirrt_star -n pointnet2 --problem {2D_problem_type} 
python eval_planning_2d.py -p nrrt_star -n pointnet2 -c bfs --problem {2D_problem_type} 
python eval_planning_2d.py -p nrrt_star -n pointnet2 --problem {2D_problem_type} 
python eval_planning_2d.py -p nrrt_star -n unet --problem {2D_problem_type}
python eval_planning_2d.py -p irrt_star --problem {2D_problem_type} 
python eval_planning_2d.py -p rrt_star --problem {2D_problem_type} 

where {2D_problem_type} can be random_2d, block, or gap. Note unet cannot be used for block, as unet requires img_height % 32 == 0 and img_width % 32 == 0, while block may change the environment range randomly and does not meet this requirements.

3D

Run

conda activate pngenv
python eval_planning_3d.py -p nirrt_star -n pointnet2 -c bfs
python eval_planning_3d.py -p nirrt_star -n pointnet2
python eval_planning_3d.py -p nrrt_star -n pointnet2 -c bfs
python eval_planning_3d.py -p nrrt_star -n pointnet2
python eval_planning_3d.py -p irrt_star
python eval_planning_3d.py -p rrt_star

Result Analysis

Run

conda activate pngenv
python result_analysis_random_world_2d.py
python result_analysis_random_world_3d.py
python result_analysis_block.py
python result_analysis_gap.py

Visualizations are saved in visualization/evaluation/.

References

zhm-real/PathPlanning

yanx27/Pointnet_Pointnet2_pytorch

rawmarshmellows/pytorch-unet-resnet-50-encoder

UCSD CSE 291 Collision Detection Material

Simple Intersection Tests for Games

Contact

Please feel free to open an issue or send an email to zheh4@illinois.edu.