-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Avoid allocating a large arraybuffer when loading weights (#7598)
The loadWeights function loads weights in 4MB chunks and then concatenates them into a single large ArrayBuffer. That ArrayBuffer is used for splitting the weights data back up into tensors. Allocating large ArrayBuffers (3.5GB) can be unstable on Chrome, so this PR avoids this allocation, instead slicing the weights out of the chunks manually. The implementation wraps the array of weights (stored as ArrayBuffer[]) in a new CompositeArrayBuffer class. This class implements slice by copying the desired range out of the buffer(s) that it overlaps with.
- Loading branch information
1 parent
78a3a03
commit 3ceace9
Showing
4 changed files
with
365 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
/** | ||
* @license | ||
* Copyright 2023 Google LLC. All Rights Reserved. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
import {TypedArray} from '../types'; | ||
import * as util from '../util'; | ||
|
||
type BufferShard = { | ||
start: number, | ||
end: number, | ||
buffer: ArrayBuffer, | ||
}; | ||
|
||
/** | ||
* Wraps a list of ArrayBuffers into a `slice()`-able object without allocating | ||
* a large ArrayBuffer. | ||
* | ||
* Allocating large ArrayBuffers (~2GB) can be unstable on Chrome. TFJS loads | ||
* its weights as a list of (usually) 4MB ArrayBuffers and then slices the | ||
* weight tensors out of them. For small models, it's safe to concatenate all | ||
* the weight buffers into a single ArrayBuffer and then slice the weight | ||
* tensors out of it, but for large models, a different approach is needed. | ||
*/ | ||
|
||
export class CompositeArrayBuffer { | ||
private shards: BufferShard[] = []; | ||
private previousShardIndex = 0; | ||
private bufferUniformSize?: number; | ||
public readonly byteLength: number; | ||
|
||
constructor(buffers: ArrayBuffer | ArrayBuffer[] | TypedArray | | ||
TypedArray[]) { | ||
// Normalize the `buffers` input to be `ArrayBuffer[]`. | ||
if (!(buffers instanceof Array)) { | ||
buffers = [buffers]; | ||
} | ||
buffers = buffers.map((bufferOrTypedArray) => { | ||
if (util.isTypedArray(bufferOrTypedArray)) { | ||
return bufferOrTypedArray.buffer; | ||
} | ||
return bufferOrTypedArray; | ||
}); | ||
|
||
// Skip setting up shards if there are no buffers. | ||
if (buffers.length === 0) { | ||
return; | ||
} | ||
|
||
this.bufferUniformSize = buffers[0].byteLength; | ||
let start = 0; | ||
|
||
for (let i = 0; i < buffers.length; i++) { | ||
const buffer = buffers[i]; | ||
// Check that all buffers except the last one have the same length. | ||
if (i !== buffers.length - 1 && | ||
buffer.byteLength !== this.bufferUniformSize) { | ||
// Unset the buffer uniform size, since the buffer sizes are not | ||
// uniform. | ||
this.bufferUniformSize = undefined; | ||
} | ||
|
||
// Create the shards, including their start and end points. | ||
const end = start + buffer.byteLength; | ||
this.shards.push({ buffer, start, end }); | ||
start = end; | ||
} | ||
|
||
// Set the byteLenghth | ||
if (this.shards.length === 0) { | ||
this.byteLength = 0; | ||
} | ||
this.byteLength = this.shards[this.shards.length - 1].end; | ||
} | ||
|
||
slice(start = 0, end = this.byteLength): ArrayBuffer { | ||
// NaN is treated as zero for slicing. This matches ArrayBuffer's behavior. | ||
start = isNaN(Number(start)) ? 0 : start; | ||
end = isNaN(Number(end)) ? 0 : end; | ||
|
||
// Fix the bounds to within the array. | ||
start = Math.max(0, start); | ||
end = Math.min(this.byteLength, end); | ||
if (end <= start) { | ||
return new ArrayBuffer(0); | ||
} | ||
|
||
const startShardIndex = this.findShardForByte(start); | ||
if (startShardIndex === -1) { | ||
// This should not happen since the start and end indices are always | ||
// within 0 and the composite array's length. | ||
throw new Error(`Could not find start shard for byte ${start}`); | ||
} | ||
|
||
const size = end - start; | ||
const outputBuffer = new ArrayBuffer(size); | ||
const outputArray = new Uint8Array(outputBuffer); | ||
let sliced = 0; | ||
for (let i = startShardIndex; i < this.shards.length; i++) { | ||
const shard = this.shards[i]; | ||
|
||
const globalStart = start + sliced; | ||
const localStart = globalStart - shard.start; | ||
const outputStart = sliced; | ||
|
||
const globalEnd = Math.min(end, shard.end); | ||
const localEnd = globalEnd - shard.start; | ||
|
||
const outputSlice = new Uint8Array(shard.buffer.slice(localStart, | ||
localEnd)); | ||
outputArray.set(outputSlice, outputStart); | ||
sliced += outputSlice.length; | ||
|
||
if (end < shard.end) { | ||
break; | ||
} | ||
} | ||
return outputBuffer; | ||
} | ||
|
||
/** | ||
* Get the index of the shard that contains the byte at `byteIndex`. | ||
*/ | ||
private findShardForByte(byteIndex: number): number { | ||
if (this.shards.length === 0 || byteIndex < 0 || | ||
byteIndex >= this.byteLength) { | ||
return -1; | ||
} | ||
|
||
// If the buffers have a uniform size, compute the shard directly. | ||
if (this.bufferUniformSize != null) { | ||
this.previousShardIndex = Math.floor(byteIndex / this.bufferUniformSize); | ||
return this.previousShardIndex; | ||
} | ||
|
||
// If the buffers don't have a uniform size, we need to search for the | ||
// shard. That means we need a function to check where the byteIndex lies | ||
// relative to a given shard. | ||
function check(shard: BufferShard) { | ||
if (byteIndex < shard.start) { | ||
return -1; | ||
} | ||
if (byteIndex >= shard.end) { | ||
return 1; | ||
} | ||
return 0; | ||
} | ||
|
||
// For efficiency, try the previous shard first. | ||
if (check(this.shards[this.previousShardIndex]) === 0) { | ||
return this.previousShardIndex; | ||
} | ||
|
||
// Otherwise, use a generic search function. | ||
// This should almost never end up being used in practice since the weight | ||
// entries should always be in order. | ||
const index = search(this.shards, check); | ||
if (index === -1) { | ||
return -1; | ||
} | ||
|
||
this.previousShardIndex = index; | ||
return this.previousShardIndex; | ||
} | ||
} | ||
|
||
/** | ||
* Search for an element of a sorted array. | ||
* | ||
* @param sortedArray The sorted array to search | ||
* @param compare A function to compare the current value against the searched | ||
* value. Return 0 on a match, negative if the searched value is less than | ||
* the value passed to the function, and positive if the searched value is | ||
* greater than the value passed to the function. | ||
* @returns The index of the element, or -1 if it's not in the array. | ||
*/ | ||
export function search<T>(sortedArray: T[], compare: (t: T) => number): number { | ||
// Binary search | ||
let min = 0; | ||
let max = sortedArray.length; | ||
|
||
while (min <= max) { | ||
const middle = Math.floor((max - min) / 2) + min; | ||
const side = compare(sortedArray[middle]); | ||
|
||
if (side === 0) { | ||
return middle; | ||
} else if (side < 0) { | ||
max = middle; | ||
} else { | ||
min = middle + 1; | ||
} | ||
} | ||
return -1; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
/** | ||
* @license | ||
* Copyright 2023 Google LLC. All Rights Reserved. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
import {expectArraysEqual} from '../test_util'; | ||
import {CompositeArrayBuffer} from './composite_array_buffer'; | ||
|
||
describe('CompositeArrayBuffer', () => { | ||
const uniformBuffers = [ | ||
new Uint8Array([0, 1, 2, 3]).buffer, | ||
new Uint8Array([4, 5, 6, 7]).buffer, | ||
new Uint8Array([8, 9, 10, 11]).buffer, | ||
new Uint8Array([12, 13, 14, 15]).buffer, | ||
new Uint8Array([16]).buffer, | ||
]; | ||
|
||
const nonUniformBuffers = [ | ||
new Uint8Array([0, 1, 2]).buffer, | ||
new Uint8Array([3, 4, 5, 6, 7]).buffer, | ||
new Uint8Array([8, 9, 10, 11]).buffer, | ||
new Uint8Array([12, 13, 14, 15, 16]).buffer, | ||
]; | ||
|
||
const bufferTestCases = [ | ||
['uniform', uniformBuffers], | ||
['non-uniform', nonUniformBuffers] | ||
] as const; | ||
|
||
for (const [buffersType, buffers] of bufferTestCases) { | ||
let composite: CompositeArrayBuffer; | ||
beforeEach(() => { | ||
composite = new CompositeArrayBuffer(buffers); | ||
}); | ||
|
||
it(`${buffersType}: slices across multiple buffers`, () => { | ||
expectArraysEqual(new Uint8Array(composite.slice(1, 13)), | ||
[1,2,3,4,5,6,7,8,9,10,11,12]); | ||
}); | ||
|
||
it(`${buffersType}: slices to the end of the array when \'end\' is not ` + | ||
'specified', () => { | ||
expectArraysEqual(new Uint8Array(composite.slice(5)), | ||
[5,6,7,8,9,10,11,12,13,14,15,16]); | ||
}); | ||
|
||
it(`${buffersType}: makes a copy when slice() is called with no arguments`, | ||
() => { | ||
expectArraysEqual(new Uint8Array(composite.slice()), | ||
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]); | ||
}); | ||
|
||
it(`${buffersType}: slices from zero when start is negative`, () => { | ||
expectArraysEqual(new Uint8Array(composite.slice(-4, 5)), | ||
[0,1,2,3,4]); | ||
}); | ||
|
||
it(`${buffersType}: slices to the end when end is greater than length`, | ||
() => { | ||
expectArraysEqual(new Uint8Array(composite.slice(7, 1000)), | ||
[7,8,9,10,11,12,13,14,15,16]); | ||
}); | ||
|
||
it(`${buffersType}: slices multiple ranges out of order`, () => { | ||
expectArraysEqual(new Uint8Array(composite.slice(13, 15)), [13, 14]); | ||
expectArraysEqual(new Uint8Array(composite.slice(0, 2)), [0, 1]); | ||
expectArraysEqual(new Uint8Array(composite.slice(9, 13)), | ||
[9, 10, 11, 12]); | ||
}); | ||
} | ||
|
||
it('can be passed an empty arraybuffer', () => { | ||
const array = new Uint8Array([]); | ||
const singleComposite = new CompositeArrayBuffer(array.buffer); | ||
expectArraysEqual(new Uint8Array(singleComposite.slice()), []); | ||
}); | ||
|
||
it('can be created from a single array', () => { | ||
const array = new Uint8Array([1,2,3]); | ||
const singleComposite = new CompositeArrayBuffer(array.buffer); | ||
expectArraysEqual(new Uint8Array(singleComposite.slice()), array); | ||
}); | ||
|
||
it('treats NaN as zero when passed as the start of slice', () => { | ||
const array = new Uint8Array([1,2,3]); | ||
const composite = new CompositeArrayBuffer(array.buffer); | ||
expectArraysEqual(new Uint8Array(composite.slice(NaN, 2)), [1,2]); | ||
}); | ||
|
||
it('treats NaN as zero when passed as the end of slice', () => { | ||
const array = new Uint8Array([1,2,3]); | ||
const composite = new CompositeArrayBuffer(array.buffer); | ||
expectArraysEqual(new Uint8Array(composite.slice(0, NaN)), []); | ||
}); | ||
|
||
it('supports TypedArray input', () => { | ||
// This support is necessary for some tests in tfjs-converter. Maybe those | ||
// tests are misconfigured? | ||
const array = new Uint8Array([1,2,3]); | ||
const composite = new CompositeArrayBuffer(array); | ||
expectArraysEqual(new Uint8Array(composite.slice(0, 2)), [1,2]); | ||
}); | ||
}); |
Oops, something went wrong.