Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Avoid allocating a large arraybuffer when loading weights #7598

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
f7be3c6
Implement two methods for avoiding large arraybuffer
mattsoulanille Apr 18, 2023
076c8a2
Use the CompositeArrayBuffer method
mattsoulanille Apr 18, 2023
bca64fd
Implement binsearch
mattsoulanille Apr 18, 2023
0d26418
Check the last used range first for efficiency
mattsoulanille Apr 18, 2023
0051fd7
Optimize for when buffers have the same size
mattsoulanille Apr 18, 2023
c5b4f8e
Replace recursive binsearch with iterative
mattsoulanille Apr 18, 2023
49ffd05
Merge branch 'master' into avoid_large_arraybuffer
mattsoulanille Apr 18, 2023
05a9831
Comments
mattsoulanille Apr 18, 2023
0c4e517
Remove commented code. Fix typo
mattsoulanille Apr 18, 2023
a530b92
Add @returns annotation to search function
mattsoulanille Apr 18, 2023
0294b53
Export and test CompositeArrayBuffer
mattsoulanille Apr 19, 2023
f81638f
Support NaN as a start or end to CompositeArray slice
mattsoulanille Apr 19, 2023
6a07547
CompositeArrayBuffer support TypedArrays in constructor
mattsoulanille Apr 20, 2023
61caf8c
Formatting
mattsoulanille Apr 20, 2023
029ec8f
Merge remote-tracking branch 'upstream/master' into avoid_large_array…
mattsoulanille Apr 20, 2023
b1fe5eb
Lint
mattsoulanille Apr 20, 2023
b86ee6e
Fix slicing out of order
mattsoulanille Apr 20, 2023
7e88a89
fix lint
mattsoulanille Apr 20, 2023
8287312
Merge branch 'master' into avoid_large_arraybuffer
mattsoulanille Apr 20, 2023
f2fa6f8
Document CompositeArrayBuffer
mattsoulanille Apr 20, 2023
91db31a
Rename range -> shard
mattsoulanille Apr 20, 2023
26c51df
Move CompositeArrayBuffer to a new file
mattsoulanille Apr 20, 2023
ec9a382
Add license
mattsoulanille Apr 20, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
206 changes: 206 additions & 0 deletions tfjs-core/src/io/composite_array_buffer.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
/**
* @license
* Copyright 2023 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {TypedArray} from '../types';
import * as util from '../util';

type BufferShard = {
start: number,
end: number,
buffer: ArrayBuffer,
};

/**
* Wraps a list of ArrayBuffers into a `slice()`-able object without allocating
* a large ArrayBuffer.
*
* Allocating large ArrayBuffers (~2GB) can be unstable on Chrome. TFJS loads
* its weights as a list of (usually) 4MB ArrayBuffers and then slices the
* weight tensors out of them. For small models, it's safe to concatenate all
* the weight buffers into a single ArrayBuffer and then slice the weight
* tensors out of it, but for large models, a different approach is needed.
*/

export class CompositeArrayBuffer {
private shards: BufferShard[] = [];
private previousShardIndex = 0;
private bufferUniformSize?: number;
public readonly byteLength: number;

constructor(buffers: ArrayBuffer | ArrayBuffer[] | TypedArray |
TypedArray[]) {
// Normalize the `buffers` input to be `ArrayBuffer[]`.
if (!(buffers instanceof Array)) {
buffers = [buffers];
}
buffers = buffers.map((bufferOrTypedArray) => {
if (util.isTypedArray(bufferOrTypedArray)) {
return bufferOrTypedArray.buffer;
}
return bufferOrTypedArray;
});

// Skip setting up shards if there are no buffers.
if (buffers.length === 0) {
return;
}

this.bufferUniformSize = buffers[0].byteLength;
let start = 0;

for (let i = 0; i < buffers.length; i++) {
const buffer = buffers[i];
// Check that all buffers except the last one have the same length.
if (i !== buffers.length - 1 &&
buffer.byteLength !== this.bufferUniformSize) {
// Unset the buffer uniform size, since the buffer sizes are not
// uniform.
this.bufferUniformSize = undefined;
}

// Create the shards, including their start and end points.
const end = start + buffer.byteLength;
this.shards.push({ buffer, start, end });
start = end;
}

// Set the byteLenghth
if (this.shards.length === 0) {
this.byteLength = 0;
}
this.byteLength = this.shards[this.shards.length - 1].end;
}

slice(start = 0, end = this.byteLength): ArrayBuffer {
// NaN is treated as zero for slicing. This matches ArrayBuffer's behavior.
start = isNaN(Number(start)) ? 0 : start;
end = isNaN(Number(end)) ? 0 : end;

// Fix the bounds to within the array.
start = Math.max(0, start);
end = Math.min(this.byteLength, end);
if (end <= start) {
return new ArrayBuffer(0);
}

const startShardIndex = this.findShardForByte(start);
if (startShardIndex === -1) {
// This should not happen since the start and end indices are always
// within 0 and the composite array's length.
throw new Error(`Could not find start shard for byte ${start}`);
}

const size = end - start;
const outputBuffer = new ArrayBuffer(size);
const outputArray = new Uint8Array(outputBuffer);
let sliced = 0;
for (let i = startShardIndex; i < this.shards.length; i++) {
const shard = this.shards[i];

const globalStart = start + sliced;
const localStart = globalStart - shard.start;
const outputStart = sliced;

const globalEnd = Math.min(end, shard.end);
const localEnd = globalEnd - shard.start;

const outputSlice = new Uint8Array(shard.buffer.slice(localStart,
localEnd));
outputArray.set(outputSlice, outputStart);
sliced += outputSlice.length;

if (end < shard.end) {
break;
}
}
return outputBuffer;
}

/**
* Get the index of the shard that contains the byte at `byteIndex`.
*/
private findShardForByte(byteIndex: number): number {
if (this.shards.length === 0 || byteIndex < 0 ||
byteIndex >= this.byteLength) {
return -1;
}

// If the buffers have a uniform size, compute the shard directly.
if (this.bufferUniformSize != null) {
this.previousShardIndex = Math.floor(byteIndex / this.bufferUniformSize);
return this.previousShardIndex;
}

// If the buffers don't have a uniform size, we need to search for the
// shard. That means we need a function to check where the byteIndex lies
// relative to a given shard.
function check(shard: BufferShard) {
if (byteIndex < shard.start) {
return -1;
}
if (byteIndex >= shard.end) {
return 1;
}
return 0;
}

// For efficiency, try the previous shard first.
if (check(this.shards[this.previousShardIndex]) === 0) {
return this.previousShardIndex;
}

// Otherwise, use a generic search function.
// This should almost never end up being used in practice since the weight
// entries should always be in order.
const index = search(this.shards, check);
if (index === -1) {
return -1;
}

this.previousShardIndex = index;
return this.previousShardIndex;
}
}

/**
* Search for an element of a sorted array.
*
* @param sortedArray The sorted array to search
* @param compare A function to compare the current value against the searched
* value. Return 0 on a match, negative if the searched value is less than
* the value passed to the function, and positive if the searched value is
* greater than the value passed to the function.
* @returns The index of the element, or -1 if it's not in the array.
*/
export function search<T>(sortedArray: T[], compare: (t: T) => number): number {
// Binary search
let min = 0;
let max = sortedArray.length;

while (min <= max) {
const middle = Math.floor((max - min) / 2) + min;
const side = compare(sortedArray[middle]);

if (side === 0) {
return middle;
} else if (side < 0) {
max = middle;
} else {
min = middle + 1;
}
}
return -1;
}
114 changes: 114 additions & 0 deletions tfjs-core/src/io/composite_array_buffer_test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
/**
* @license
* Copyright 2023 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {expectArraysEqual} from '../test_util';
import {CompositeArrayBuffer} from './composite_array_buffer';

describe('CompositeArrayBuffer', () => {
const uniformBuffers = [
new Uint8Array([0, 1, 2, 3]).buffer,
new Uint8Array([4, 5, 6, 7]).buffer,
new Uint8Array([8, 9, 10, 11]).buffer,
new Uint8Array([12, 13, 14, 15]).buffer,
new Uint8Array([16]).buffer,
];

const nonUniformBuffers = [
new Uint8Array([0, 1, 2]).buffer,
new Uint8Array([3, 4, 5, 6, 7]).buffer,
new Uint8Array([8, 9, 10, 11]).buffer,
new Uint8Array([12, 13, 14, 15, 16]).buffer,
];

const bufferTestCases = [
['uniform', uniformBuffers],
['non-uniform', nonUniformBuffers]
] as const;

for (const [buffersType, buffers] of bufferTestCases) {
let composite: CompositeArrayBuffer;
beforeEach(() => {
composite = new CompositeArrayBuffer(buffers);
});

it(`${buffersType}: slices across multiple buffers`, () => {
expectArraysEqual(new Uint8Array(composite.slice(1, 13)),
[1,2,3,4,5,6,7,8,9,10,11,12]);
});

it(`${buffersType}: slices to the end of the array when \'end\' is not ` +
'specified', () => {
expectArraysEqual(new Uint8Array(composite.slice(5)),
[5,6,7,8,9,10,11,12,13,14,15,16]);
});

it(`${buffersType}: makes a copy when slice() is called with no arguments`,
() => {
expectArraysEqual(new Uint8Array(composite.slice()),
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
});

it(`${buffersType}: slices from zero when start is negative`, () => {
expectArraysEqual(new Uint8Array(composite.slice(-4, 5)),
[0,1,2,3,4]);
});

it(`${buffersType}: slices to the end when end is greater than length`,
() => {
expectArraysEqual(new Uint8Array(composite.slice(7, 1000)),
[7,8,9,10,11,12,13,14,15,16]);
});

it(`${buffersType}: slices multiple ranges out of order`, () => {
expectArraysEqual(new Uint8Array(composite.slice(13, 15)), [13, 14]);
expectArraysEqual(new Uint8Array(composite.slice(0, 2)), [0, 1]);
expectArraysEqual(new Uint8Array(composite.slice(9, 13)),
[9, 10, 11, 12]);
});
}

it('can be passed an empty arraybuffer', () => {
const array = new Uint8Array([]);
const singleComposite = new CompositeArrayBuffer(array.buffer);
expectArraysEqual(new Uint8Array(singleComposite.slice()), []);
});

it('can be created from a single array', () => {
const array = new Uint8Array([1,2,3]);
const singleComposite = new CompositeArrayBuffer(array.buffer);
expectArraysEqual(new Uint8Array(singleComposite.slice()), array);
});

it('treats NaN as zero when passed as the start of slice', () => {
const array = new Uint8Array([1,2,3]);
const composite = new CompositeArrayBuffer(array.buffer);
expectArraysEqual(new Uint8Array(composite.slice(NaN, 2)), [1,2]);
});

it('treats NaN as zero when passed as the end of slice', () => {
const array = new Uint8Array([1,2,3]);
const composite = new CompositeArrayBuffer(array.buffer);
expectArraysEqual(new Uint8Array(composite.slice(0, NaN)), []);
});

it('supports TypedArray input', () => {
// This support is necessary for some tests in tfjs-converter. Maybe those
// tests are misconfigured?
const array = new Uint8Array([1,2,3]);
const composite = new CompositeArrayBuffer(array);
expectArraysEqual(new Uint8Array(composite.slice(0, 2)), [1,2]);
});
});
Loading