Skip to content
#

balanced-accuracy-scores

Here are 9 public repositories matching this topic...

Credit risk is an inherently unbalanced classification problem, as the number of good loans easily outnumber the number of risky loans. I employed Machine Learning techniques to train and evaluate models with unbalanced classes. I used imbalanced-learn and scikit-learn libraries to build and evaluate models using resampling. I also evaluated the…

  • Updated Nov 19, 2020
  • Jupyter Notebook

Module 12 - Using the imblearn , I'll use a logistic regression model to compare 2 versions of a dataset. First, I’ll use the original data. Next, I’ll resample the data by using RandomOverSampler. In both cases, I’ll get the count of the target classes, train a logistic regression classifier, calculate the balanced accuracy score, generate a con

  • Updated Oct 31, 2022
  • Jupyter Notebook

Performed feature engineering, cross-validation (5 fold) on baseline and cost-sensitive (accounting for class imbalance) Decision trees and Logistic Regression models and compared performance. Used appropriate performance metrics i.e., AUC ROC, Average Precision and Balanced Accuracy. Outperformed baseline model.

  • Updated Jul 24, 2023
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the balanced-accuracy-scores topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the balanced-accuracy-scores topic, visit your repo's landing page and select "manage topics."

Learn more