Toy Natural Language Processing package
-
Updated
Oct 8, 2024 - Python
Toy Natural Language Processing package
Chinese word segmentation in tensorflow 2.x
利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现【The word segmentation task is realized by using traditional methods (n-gram, HMM, etc.), neural network methods (CNN, LSTM, etc.) and pre training methods (Bert, etc.)】
Pytorch-BERT-CRF-NER;Chinese-Named-Entity-Recognition
Add CRF or LSTM+CRF for huggingface transformers bert to perform better on NER task. It is very simple to use and very convenient to customize
A PyTorch implementation of a BiLSTM \ BERT \ Roberta (+ BiLSTM + CRF) model for Chinese Word Segmentation (中文分词) .
基于Tensorflow2.3开发的NER模型,都是CRF范式,包含Bilstm(IDCNN)-CRF、Bert-Bilstm(IDCNN)-CRF、Bert-CRF,可微调预训练模型,可对抗学习,用于命名实体识别,配置后可直接运行。
A PyTorch implementation of a BiLSTM\BERT\Roberta(+CRF) model for Named Entity Recognition.
KoBERT와 CRF로 만든 한국어 개체명인식기 (BERT+CRF based Named Entity Recognition model for Korean)
Add a description, image, and links to the bert-crf topic page so that developers can more easily learn about it.
To associate your repository with the bert-crf topic, visit your repo's landing page and select "manage topics."