基于Tensorflow2.3开发的NER模型,都是CRF范式,包含Bilstm(IDCNN)-CRF、Bert-Bilstm(IDCNN)-CRF、Bert-CRF,可微调预训练模型,可对抗学习,用于命名实体识别,配置后可直接运行。
-
Updated
Sep 2, 2024 - Python
基于Tensorflow2.3开发的NER模型,都是CRF范式,包含Bilstm(IDCNN)-CRF、Bert-Bilstm(IDCNN)-CRF、Bert-CRF,可微调预训练模型,可对抗学习,用于命名实体识别,配置后可直接运行。
基于 TensorFlow & PaddlePaddle 的通用序列标注算法库(目前包含 BiLSTM+CRF, Stacked-BiLSTM+CRF 和 IDCNN+CRF,更多算法正在持续添加中)实现中文分词(Tokenizer / segmentation)、词性标注(Part Of Speech, POS)和命名实体识别(Named Entity Recognition, NER)等序列标注任务。
中文命名实体识别& 中文命名实体检测 python实现 基于字+ 词位 分别使用tensorflow IDCNN+CRF 及 BiLSTM+CRF 搭配词性标注实现中文命名实体识别及命名实体检测
Implementations of BiLSTM-CRF and IDCNN-CRF NER models on Weibo, MSRA and Twitter copora.
Named Entity Recognition (NER) Based on MSRA
Add a description, image, and links to the idcnn-crf topic page so that developers can more easily learn about it.
To associate your repository with the idcnn-crf topic, visit your repo's landing page and select "manage topics."