You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Successfully fine-tuned a pretrained DistilBERT transformer model that can classify social media text data into one of 4 cyberbullying labels i.e. ethnicity/race, gender/sexual, religion and not cyberbullying with a remarkable accuracy of 99%.
Successfully developed a fine-tuned BERT transformer model which can accurately classify symptoms to their corresponding diseases upto an accuracy of 89%.
Successfully developed a fine-tuned DistilBERT transformer model which can accurately predict the overall sentiment of a piece of financial news up to an accuracy of nearly 81.5%.
This repo contains code for toxic comment classification using deep learning models based on recurrent neural networks and transformers like BERT. The goal is to detect and classify toxic comments in online conversations using Jigsaw's Toxic Comment Classification dataset.