Skip to content

Commit

Permalink
BUG SeriesGroupBy.mean() overflowed on some integer array (pandas-dev…
Browse files Browse the repository at this point in the history
…#22487)

When integer arrays contained integers that could were outside
the range of int64, the conversion would overflow.
Instead only allow allow safe casting and if a safe cast can not
be done, cast to float64 instead.
  • Loading branch information
troels committed Sep 9, 2018
1 parent 0976e12 commit 6796bf4
Show file tree
Hide file tree
Showing 3 changed files with 16 additions and 1 deletion.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -754,6 +754,7 @@ Groupby/Resample/Rolling
- Bug in :meth:`Resampler.apply` when passing postiional arguments to applied func (:issue:`14615`).
- Bug in :meth:`Series.resample` when passing ``numpy.timedelta64`` to `loffset` kwarg (:issue:`7687`).
- Bug in :meth:`Resampler.asfreq` when frequency of ``TimedeltaIndex`` is a subperiod of a new frequency (:issue:`13022`).
- Bug in :meth:`SeriesGroupBy.mean` when values where integral but could not fit inside of int64, overflowing instead. (:issues:`22487`)

Sparse
^^^^^^
Expand Down
7 changes: 6 additions & 1 deletion pandas/core/groupby/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -471,7 +471,12 @@ def _cython_operation(self, kind, values, how, axis, min_count=-1,
if (values == iNaT).any():
values = ensure_float64(values)
else:
values = values.astype('int64', copy=False)
try:
values = values.astype('int64', copy=False, casting='safe')
except TypeError:
# At least one of the integers were outside the range of
# int64. Convert to float64 instead.
values = values.astype('float64', copy=False)
elif is_numeric and not is_complex_dtype(values):
values = ensure_float64(values)
else:
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/arrays/test_integer.py
Original file line number Diff line number Diff line change
Expand Up @@ -603,6 +603,15 @@ def test_groupby_mean_included():
tm.assert_frame_equal(result, expected)


def test_groupby_mean_no_overflow():
# Regression test for (#22487)
df = pd.DataFrame({
"user": ["A", "A", "A", "A", "A"],
"connections": [4970, 4749, 4719, 4704, 18446744073699999744]
})
assert df.groupby('user')['connections'].mean()['A'] == 3689348814740003840


def test_astype_nansafe():
# https://github.com/pandas-dev/pandas/pull/22343
arr = integer_array([np.nan, 1, 2], dtype="Int8")
Expand Down

0 comments on commit 6796bf4

Please sign in to comment.