-
Notifications
You must be signed in to change notification settings - Fork 881
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[BUG] .tail() .head() fail in version 0.17.0 and above #817
Labels
bug
Something isn't working
Comments
stuart-wales-work
added
bug
Something isn't working
triage
Issue waiting for triaging
labels
Feb 23, 2022
Thank you for reporting, seems like a bug indeed. |
No, thank you for your awesome library!
|
Merged
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Describe the bug
Version: u8darts 0.17.0 and above
Timeseries subsetting methods .tail() and .head() fail, triggering error
_File "C:\Users\stuartw\AppData\Roaming\Python\Python38\site-packages\darts\timeseries.py", line 1243, in head
return self.class(self.xa[{axis_str: display_n}])
File "C:\Users\stuartw\AppData\Roaming\Python\Python38\site-packages\darts\timeseries.py", line 142, in init
raise_log(
File "C:\Users\stuartw\AppData\Roaming\Python\Python38\site-packages\darts\logging.py", line 135, in raise_log
raise exception
ValueError: The time dimension of the DataArray must be indexed either with a DatetimeIndex or with an RangeIndex
this occurs no matter what length of subset is requested.
dataframe index is RangeIndex type and monotonic per .is_monotonic check in Pandas.
This error was not triggered in version 0.16.0
To Reproduce
simple example code
import pandas as pd
from darts import TimeSeries
df_full = pd.read_csv("1002.RNN.csv")
ts_pend=TimeSeries.from_dataframe(df_full).head()
Where 1002.RNN.csv is a csv with columns and rows of unheadered floats.
Expected behavior
create a subseries of the original timeseries.
System (please complete the following information):
Python
3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:37:50) [MSC v.1916 64 bit (AMD64)]
absl-py 0.15.0
aiohttp 3.8.1
aiosignal 1.2.0
async-timeout 4.0.2
attrs 21.4.0
backcall 0.2.0
cachetools 4.2.4
certifi 2021.10.8
charset-normalizer 2.0.7
click 8.0.3
cmdstanpy 0.9.68
colorama 0.4.4
convertdate 2.3.2
cycler 0.11.0
Cython 0.29.24
decorator 5.1.0
Deprecated 1.2.13
ephem 4.1
filelock 3.4.2
filterpy 1.4.5
frozenlist 1.3.0
fsspec 2022.2.0
future 0.18.2
google-auth 2.3.3
google-auth-oauthlib 0.4.6
grpcio 1.41.1
hijri-converter 2.2.2
holidays 0.11.3.1
idna 3.3
importlib-resources 5.4.0
ipython 7.29.0
jedi 0.18.0
joblib 1.1.0
jsonschema 4.4.0
kiwisolver 1.3.2
korean-lunar-calendar 0.2.1
lightgbm 3.3.1
LunarCalendar 0.0.9
Markdown 3.3.4
matplotlib 3.4.3
matplotlib-inline 0.1.3
mpmath 1.2.1
msgpack 1.0.3
multidict 6.0.2
nfoursid 1.0.0
numpy 1.21.4
oauthlib 3.1.1
OrcFxAPI 11.2.1
packaging 21.3
pandas 1.3.4
parso 0.8.2
patsy 0.5.2
pickleshare 0.7.5
Pillow 8.4.0
pip 21.3.1
pmdarima 1.8.4
prompt-toolkit 3.0.22
protobuf 3.19.1
pyasn1 0.4.8
pyasn1-modules 0.2.8
pyDeprecate 0.3.1
Pygments 2.10.0
PyMeeus 0.5.11
pyparsing 3.0.7
pyrsistent 0.18.1
pystan 2.19.1.1
python-dateutil 2.8.1
pytorch-lightning 1.5.5
pytz 2019.3
PyWavelets 1.1.1
PyYAML 6.0
ray 1.10.0
redis 4.1.2
requests 2.26.0
requests-oauthlib 1.3.0
rsa 4.7.2
scikit-learn 1.0.1
scipy 1.7.1
setuptools 59.5.0
setuptools-git 1.2
six 1.13.0
statsmodels 0.13.0
sympy 1.8
tensorboard 2.7.0
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.0
threadpoolctl 3.0.0
torch 1.10.0
torchmetrics 0.7.2
tqdm 4.62.3
traitlets 5.1.1
typing-extensions 3.10.0.2
u8darts 0.17.0
ujson 4.2.0
urllib3 1.26.7
wcwidth 0.2.5
Werkzeug 2.0.2
wheel 0.37.0
wrapt 1.13.3
xarray 0.20.1
yarl 1.7.2
zipp 3.7.0
Additional context
Depreciating u8darts to 0.16.0 results in incompatabilities using previously trained models (trained in u8darts 0.17.1)
The text was updated successfully, but these errors were encountered: