Python 3.8 + PyTorch 1.9.0 + CUDA 11.1 + Detectron2 (v0.6)
git clone https://github.com/unxiaohao/STTS.git
cd STTS
conda create -n stts python=3.8 -y
conda activate stts
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html
python setup.py build develop
-
[SynChinese130K]
images | annotations -
[ArT]
images | annotations -
[LSVT]
images | annotations -
[ReCTS]
images | annotations -
[Evaluation ground-truth]
Link
python tools/train_net.py --config-file configs/R_50/ReCTS/pretrain.yaml --num-gpus 8
python tools/train_net.py --config-file configs/R_50/ReCTS/finetune.yaml --num-gpus 8
To evaluate ICDAR 2019 ReCTS, you can directly submit the saved file to the official website for evaluation.
This project is based on Adelaidet. For academic use, this project is licensed under the 2-clause BSD License.