Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

enhance: add python logic to compute daily participant analytics based on question response details #4212

Merged
merged 6 commits into from
Aug 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
353 changes: 353 additions & 0 deletions apps/analytics/daily_participant_analytics.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preparation & Data Fetching"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"from datetime import datetime\n",
"from prisma import Prisma\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"db = Prisma()\n",
"\n",
"# set the environment variable DATABASE_URL to the connection string of your database\n",
"os.environ['DATABASE_URL'] = 'postgresql://klicker:klicker@localhost:5432/klicker-prod'\n",

Check failure

Code scanning / SonarCloud

PostgreSQL database passwords should not be disclosed

<!--SONAR_ISSUE_KEY:AZGPFn9QAP44JPMdPEMb-->Make sure this PostgreSQL database password gets changed and removed from the code. <p>See more on <a href="https://sonarcloud.io/project/issues?id=uzh-bf_klicker-uzh&issues=AZGPFn9QAP44JPMdPEMb&open=AZGPFn9QAP44JPMdPEMb&pullRequest=4212">SonarCloud</a></p>
"\n",
"db.connect()"
]
},
sjschlapbach marked this conversation as resolved.
Show resolved Hide resolved
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Fetch all question response detail entries for a specific day\n",
"specific_date = '2024-06-10'\n",
"date_start = specific_date + 'T00:00:00.000Z'\n",
"date_end = specific_date + 'T23:59:59.999Z'\n",
"participant_response_details = db.participant.find_many(\n",
" include={\n",
" 'detailQuestionResponses': {\n",
" 'where': {\n",
" 'createdAt': {\n",
" 'gte': date_start,\n",
" 'lte': date_end\n",
" }\n",
" },\n",
" 'include': {\n",
" 'practiceQuiz': True,\n",
" 'microLearning': True\n",
" }\n",
" },\n",
" }\n",
")\n",
"\n",
"# Print the first 5 question response details\n",
"print(\"Found {} participants for the timespan from {} to {}\".format(len(participant_response_details), date_start, date_end))\n",
"print(participant_response_details[0])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute Correctness Metrics for Responses"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert the question response details to a pandas dataframe\n",
"def map_details(detail, participantId):\n",
" courseId = detail['practiceQuiz']['courseId'] if detail['practiceQuiz'] else detail['microLearning']['courseId']\n",
" return {\n",
" **detail,\n",
" 'participantId': participantId,\n",
" 'courseId': courseId\n",
" }\n",
"\n",
"def map_participants(participant):\n",
" participant_dict = participant.dict()\n",
" return list(map(lambda detail: map_details(detail, participant_dict['id']), participant_dict['detailQuestionResponses']))\n",
"\n",
"def convert_to_df(participants):\n",
" return pd.DataFrame([item for sublist in list(map(map_participants, participants)) for item in sublist])\n",
"\n",
"df_details = convert_to_df(participant_response_details)\n",
"df_details = df_details[['score', 'pointsAwarded', 'xpAwarded', 'timeSpent', 'response', 'elementInstanceId', 'participantId', 'courseId']]\n",
"print(\"Question detail responses:\", len(df_details))\n",
"print(\"Columns:\", df_details.columns)\n",
"df_details.head()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute correctness of the responses and add them as a separate column\n",
"# Get related element instances\n",
"element_instance_ids = df_details['elementInstanceId'].unique()\n",
"element_instances = db.elementinstance.find_many(\n",
" where={\n",
" 'id': {\n",
" 'in': element_instance_ids.tolist()\n",
" }\n",
" }\n",
")\n",
"\n",
"# Map the element instances to the corresponding elementData.options entries and convert it to a dataframe\n",
"def map_element_instance_options(instance):\n",
" instance_dict = instance.dict()\n",
" return {\n",
" 'elementInstanceId': instance_dict['id'],\n",
" 'type': instance_dict['elementData']['type'],\n",
" 'options': instance_dict['elementData']['options'] if 'options' in instance_dict['elementData'] else None\n",
" }\n",
"\n",
"df_element_instances = pd.DataFrame(list(map(map_element_instance_options, element_instances)))\n",
"df_element_instances.head()\n",
"\n",
"# Compute the correctness for every response entry based on the element instance options (depending on the type of the element)\n",
"def compute_correctness(row):\n",
" element_instance = df_element_instances[df_element_instances['elementInstanceId'] == row['elementInstanceId']].iloc[0]\n",
" response = row['response']\n",
" options = element_instance['options']\n",
"\n",
" if element_instance['type'] == 'FLASHCARD' or element_instance['type'] == 'CONTENT':\n",
" return None\n",
"\n",
" elif element_instance['type'] == 'SC':\n",
" selected_choice = response['choices'][0]\n",
" correct_choice = next((choice['ix'] for choice in options['choices'] if choice['correct']), None)\n",
" return 'CORRECT' if selected_choice == correct_choice else 'INCORRECT'\n",
"\n",
" elif element_instance['type'] == 'MC' or element_instance['type'] == 'KPRIM':\n",
" selected_choices = response['choices']\n",
" correct_choices = [choice['ix'] for choice in options['choices'] if choice['correct']]\n",
" available_choices = len(options['choices'])\n",
" \n",
" selected_choices_array = [1 if ix in selected_choices else 0 for ix in range(available_choices)]\n",
" correct_choices_array = [1 if ix in correct_choices else 0 for ix in range(available_choices)]\n",
" hamming_distance = sum([1 for i in range(available_choices) if selected_choices_array[i] != correct_choices_array[i]])\n",
"\n",
" if element_instance['type'] == 'MC':\n",
" correctness = max(-2 * hamming_distance / available_choices + 1, 0)\n",
" if correctness == 1:\n",
" return 'CORRECT'\n",
" elif correctness == 0:\n",
" return 'INCORRECT'\n",
" else:\n",
" return 'PARTIAL'\n",
" elif element_instance['type'] == 'KPRIM':\n",
" return 'CORRECT' if hamming_distance == 0 else 'PARTIAL' if hamming_distance == 1 else 'INCORRECT'\n",
"\n",
" elif element_instance['type'] == 'NUMERICAL':\n",
" response_value = float(response['value'])\n",
" within_range = list(map(lambda range: float(range['min']) <= response_value <= float(range['max']), options['solutionRanges']))\n",
" if any(within_range):\n",
" return 'CORRECT'\n",
"\n",
" return 'INCORRECT'\n",
"\n",
" elif element_instance['type'] == 'FREE_TEXT':\n",
" raise NotImplementedError(\"Free text correctness computation not implemented yet\")\n",
"\n",
" else:\n",
" raise ValueError(\"Unknown element type: {}\".format(element_instance['type']))\n",
"\n",
"df_details['correctness'] = df_details.apply(compute_correctness, axis=1)\n",
"df_details = df_details.dropna(subset=['correctness'])\n",
"print(\"{} question response details remaining with correctness\".format(len(df_details)))\n",
"df_details.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Aggregate Metrics and Counts for Responses"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Aggregate the question response details for the participant and course level\n",
"df_analytics_counts = df_details.groupby(['participantId', 'courseId']).agg({\n",
" 'score': 'sum',\n",
" 'pointsAwarded': 'sum',\n",
" 'xpAwarded': 'sum',\n",
" 'timeSpent': 'sum',\n",
" 'elementInstanceId': ['count', 'nunique'] # count = trialsCount, nunique = responseCount\n",
"}).reset_index()\n",
"df_analytics_counts.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Count the 'CORRECT', 'PARTIAL', and 'INCORRECT' entries for each participantId and elementInstanceId combination\n",
"df_analytics_corr_temp = df_details.groupby(['participantId', 'elementInstanceId', 'courseId', 'correctness']).size().unstack(fill_value=0).reset_index()\n",
"\n",
"# Divide each of the correctness columns by the sum of all and rename them to meanCorrect, meanPartial, meanIncorrect\n",
"df_analytics_corr_temp['sum'] = df_analytics_corr_temp['CORRECT'] + df_analytics_corr_temp['PARTIAL'] + df_analytics_corr_temp['INCORRECT']\n",
"df_analytics_corr_temp['meanCorrect'] = df_analytics_corr_temp['CORRECT'] / df_analytics_corr_temp['sum']\n",
"df_analytics_corr_temp['meanPartial'] = df_analytics_corr_temp['PARTIAL'] / df_analytics_corr_temp['sum']\n",
"df_analytics_corr_temp['meanIncorrect'] = df_analytics_corr_temp['INCORRECT'] / df_analytics_corr_temp['sum']\n",
"\n",
"# Aggregate the correctness columns for each participantId and courseId\n",
"df_analytics_correctness = df_analytics_corr_temp.groupby(['participantId', 'courseId']).agg({\n",
" 'meanCorrect': 'sum',\n",
" 'meanPartial': 'sum',\n",
" 'meanIncorrect': 'sum'\n",
"}).reset_index().rename(columns={\n",
" 'meanCorrect': 'meanCorrectCount',\n",
" 'meanPartial': 'meanPartialCount',\n",
" 'meanIncorrect': 'meanWrongCount'\n",
"})\n",
"df_analytics_correctness.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Map the counts in the corresponding analytics dataframe to a single level\n",
"df_analytics_counts.columns = df_analytics_counts.columns.map('_'.join).str.strip('_')\n",
"df_analytics_counts = df_analytics_counts.rename(columns={\n",
" 'score_sum': 'totalScore',\n",
" 'pointsAwarded_sum': 'totalPoints',\n",
" 'xpAwarded_sum': 'totalXp',\n",
" 'timeSpent_sum': 'totalTimeSpent',\n",
" 'elementInstanceId_count': 'trialsCount',\n",
" 'elementInstanceId_nunique': 'responseCount'\n",
"})\n",
"df_analytics_counts.head()\n",
"\n",
"# Combine the analytics counts and correctness dataframes based on the unique participantId and courseId combinations\n",
"df_analytics = pd.merge(df_analytics_counts, df_analytics_correctness, on=['participantId', 'courseId'])\n",
"df_analytics.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add Computed Metrics to the Database"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create daily analytics entries for all participants\n",
"for index, row in df_analytics.iterrows():\n",
" db.participantanalytics.upsert(\n",
" where={\n",
" 'type_courseId_participantId_timestamp': {\n",
" 'type': 'DAILY',\n",
" 'courseId': row['courseId'],\n",
" 'participantId': row['participantId'],\n",
" 'timestamp': specific_date + 'T00:00:00.000Z'\n",
" }\n",
" },\n",
" data={\n",
" 'create': {\n",
" 'type': 'DAILY',\n",
" 'timestamp': specific_date + 'T00:00:00.000Z',\n",
" 'trialsCount': row['trialsCount'],\n",
" 'responseCount': row['responseCount'],\n",
" 'totalScore': row['totalScore'],\n",
" 'totalPoints': row['totalPoints'],\n",
" 'totalXp': row['totalXp'],\n",
" 'meanCorrectCount': row['meanCorrectCount'],\n",
" 'meanPartialCorrectCount': row['meanPartialCount'],\n",
" 'meanWrongCount': row['meanWrongCount'],\n",
" 'participant': {\n",
" 'connect': {\n",
" 'id': row['participantId']\n",
" }\n",
" },\n",
" 'course': {\n",
" 'connect': {\n",
" 'id': row['courseId']\n",
" }\n",
" }\n",
" },\n",
" 'update': {}\n",
" }\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cleanup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"db.disconnect()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "analytics-3uz8SvN3-py3.12",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
2 changes: 1 addition & 1 deletion apps/analytics/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
name = "@klicker-uzh/analytics"
version = "0.0.1"
description = ""
authors = ["Roland Schlaefli <roland.schlaefli@df.uzh.ch>"]
authors = ["Roland Schlaefli <roland.schlaefli@df.uzh.ch>", "Julius Schlapbach <julius.schlapbach@df.uzh.ch>"]
license = "AGPL-3.0"
readme = "README.md"
packages = [{include = "@klicker_uzh"}]
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
/*
Warnings:

- You are about to drop the column `meanFirstCorrectCount` on the `ParticipantAnalytics` table. All the data in the column will be lost.
- You are about to drop the column `meanLastCorrectCount` on the `ParticipantAnalytics` table. All the data in the column will be lost.
- You are about to drop the column `collectedAchievements` on the `ParticipantAnalytics` table. All the data in the column will be lost.

*/
-- AlterTable
ALTER TABLE "ParticipantAnalytics" DROP COLUMN "meanFirstCorrectCount",
DROP COLUMN "meanLastCorrectCount",
DROP COLUMN "collectedAchievements",
ADD COLUMN "firstCorrectCount" REAL,
ADD COLUMN "firstWrongCount" REAL,
ADD COLUMN "lastCorrectCount" REAL,
ADD COLUMN "lastWrongCount" REAL;
Loading
Loading