-
Notifications
You must be signed in to change notification settings - Fork 14
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
enhance: add python logic to compute daily participant analytics based on question response details #4212
Merged
Merged
enhance: add python logic to compute daily participant analytics based on question response details #4212
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
dd22949
wip: implement python logic to compute daily participant analytics ba…
sjschlapbach 0b51ddc
chore: remove TODO
sjschlapbach bb3eebd
chore: add intermediate headers for understandability to jupyter note…
sjschlapbach 61361fd
chore: fix typo
sjschlapbach e63c8ad
chore: update database migration
sjschlapbach b04c32d
chore: fix logging and options initialization
sjschlapbach File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Preparation & Data Fetching" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import json\n", | ||
"from datetime import datetime\n", | ||
"from prisma import Prisma\n", | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"db = Prisma()\n", | ||
"\n", | ||
"# set the environment variable DATABASE_URL to the connection string of your database\n", | ||
"os.environ['DATABASE_URL'] = 'postgresql://klicker:klicker@localhost:5432/klicker-prod'\n", | ||
"\n", | ||
"db.connect()" | ||
] | ||
}, | ||
sjschlapbach marked this conversation as resolved.
Show resolved
Hide resolved
|
||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Fetch all question response detail entries for a specific day\n", | ||
"specific_date = '2024-06-10'\n", | ||
"date_start = specific_date + 'T00:00:00.000Z'\n", | ||
"date_end = specific_date + 'T23:59:59.999Z'\n", | ||
"participant_response_details = db.participant.find_many(\n", | ||
" include={\n", | ||
" 'detailQuestionResponses': {\n", | ||
" 'where': {\n", | ||
" 'createdAt': {\n", | ||
" 'gte': date_start,\n", | ||
" 'lte': date_end\n", | ||
" }\n", | ||
" },\n", | ||
" 'include': {\n", | ||
" 'practiceQuiz': True,\n", | ||
" 'microLearning': True\n", | ||
" }\n", | ||
" },\n", | ||
" }\n", | ||
")\n", | ||
"\n", | ||
"# Print the first 5 question response details\n", | ||
"print(\"Found {} participants for the timespan from {} to {}\".format(len(participant_response_details), date_start, date_end))\n", | ||
"print(participant_response_details[0])\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Compute Correctness Metrics for Responses" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Convert the question response details to a pandas dataframe\n", | ||
"def map_details(detail, participantId):\n", | ||
" courseId = detail['practiceQuiz']['courseId'] if detail['practiceQuiz'] else detail['microLearning']['courseId']\n", | ||
" return {\n", | ||
" **detail,\n", | ||
" 'participantId': participantId,\n", | ||
" 'courseId': courseId\n", | ||
" }\n", | ||
"\n", | ||
"def map_participants(participant):\n", | ||
" participant_dict = participant.dict()\n", | ||
" return list(map(lambda detail: map_details(detail, participant_dict['id']), participant_dict['detailQuestionResponses']))\n", | ||
"\n", | ||
"def convert_to_df(participants):\n", | ||
" return pd.DataFrame([item for sublist in list(map(map_participants, participants)) for item in sublist])\n", | ||
"\n", | ||
"df_details = convert_to_df(participant_response_details)\n", | ||
"df_details = df_details[['score', 'pointsAwarded', 'xpAwarded', 'timeSpent', 'response', 'elementInstanceId', 'participantId', 'courseId']]\n", | ||
"print(\"Question detail responses:\", len(df_details))\n", | ||
"print(\"Columns:\", df_details.columns)\n", | ||
"df_details.head()\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Compute correctness of the responses and add them as a separate column\n", | ||
"# Get related element instances\n", | ||
"element_instance_ids = df_details['elementInstanceId'].unique()\n", | ||
"element_instances = db.elementinstance.find_many(\n", | ||
" where={\n", | ||
" 'id': {\n", | ||
" 'in': element_instance_ids.tolist()\n", | ||
" }\n", | ||
" }\n", | ||
")\n", | ||
"\n", | ||
"# Map the element instances to the corresponding elementData.options entries and convert it to a dataframe\n", | ||
"def map_element_instance_options(instance):\n", | ||
" instance_dict = instance.dict()\n", | ||
" return {\n", | ||
" 'elementInstanceId': instance_dict['id'],\n", | ||
" 'type': instance_dict['elementData']['type'],\n", | ||
" 'options': instance_dict['elementData']['options'] if 'options' in instance_dict['elementData'] else None\n", | ||
" }\n", | ||
"\n", | ||
"df_element_instances = pd.DataFrame(list(map(map_element_instance_options, element_instances)))\n", | ||
"df_element_instances.head()\n", | ||
"\n", | ||
"# Compute the correctness for every response entry based on the element instance options (depending on the type of the element)\n", | ||
"def compute_correctness(row):\n", | ||
" element_instance = df_element_instances[df_element_instances['elementInstanceId'] == row['elementInstanceId']].iloc[0]\n", | ||
" response = row['response']\n", | ||
" options = element_instance['options']\n", | ||
"\n", | ||
" if element_instance['type'] == 'FLASHCARD' or element_instance['type'] == 'CONTENT':\n", | ||
" return None\n", | ||
"\n", | ||
" elif element_instance['type'] == 'SC':\n", | ||
" selected_choice = response['choices'][0]\n", | ||
" correct_choice = next((choice['ix'] for choice in options['choices'] if choice['correct']), None)\n", | ||
" return 'CORRECT' if selected_choice == correct_choice else 'INCORRECT'\n", | ||
"\n", | ||
" elif element_instance['type'] == 'MC' or element_instance['type'] == 'KPRIM':\n", | ||
" selected_choices = response['choices']\n", | ||
" correct_choices = [choice['ix'] for choice in options['choices'] if choice['correct']]\n", | ||
" available_choices = len(options['choices'])\n", | ||
" \n", | ||
" selected_choices_array = [1 if ix in selected_choices else 0 for ix in range(available_choices)]\n", | ||
" correct_choices_array = [1 if ix in correct_choices else 0 for ix in range(available_choices)]\n", | ||
" hamming_distance = sum([1 for i in range(available_choices) if selected_choices_array[i] != correct_choices_array[i]])\n", | ||
"\n", | ||
" if element_instance['type'] == 'MC':\n", | ||
" correctness = max(-2 * hamming_distance / available_choices + 1, 0)\n", | ||
" if correctness == 1:\n", | ||
" return 'CORRECT'\n", | ||
" elif correctness == 0:\n", | ||
" return 'INCORRECT'\n", | ||
" else:\n", | ||
" return 'PARTIAL'\n", | ||
" elif element_instance['type'] == 'KPRIM':\n", | ||
" return 'CORRECT' if hamming_distance == 0 else 'PARTIAL' if hamming_distance == 1 else 'INCORRECT'\n", | ||
"\n", | ||
" elif element_instance['type'] == 'NUMERICAL':\n", | ||
" response_value = float(response['value'])\n", | ||
" within_range = list(map(lambda range: float(range['min']) <= response_value <= float(range['max']), options['solutionRanges']))\n", | ||
" if any(within_range):\n", | ||
" return 'CORRECT'\n", | ||
"\n", | ||
" return 'INCORRECT'\n", | ||
"\n", | ||
" elif element_instance['type'] == 'FREE_TEXT':\n", | ||
" raise NotImplementedError(\"Free text correctness computation not implemented yet\")\n", | ||
"\n", | ||
" else:\n", | ||
" raise ValueError(\"Unknown element type: {}\".format(element_instance['type']))\n", | ||
"\n", | ||
"df_details['correctness'] = df_details.apply(compute_correctness, axis=1)\n", | ||
"df_details = df_details.dropna(subset=['correctness'])\n", | ||
"print(\"{} question response details remaining with correctness\".format(len(df_details)))\n", | ||
"df_details.head()\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Aggregate Metrics and Counts for Responses" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Aggregate the question response details for the participant and course level\n", | ||
"df_analytics_counts = df_details.groupby(['participantId', 'courseId']).agg({\n", | ||
" 'score': 'sum',\n", | ||
" 'pointsAwarded': 'sum',\n", | ||
" 'xpAwarded': 'sum',\n", | ||
" 'timeSpent': 'sum',\n", | ||
" 'elementInstanceId': ['count', 'nunique'] # count = trialsCount, nunique = responseCount\n", | ||
"}).reset_index()\n", | ||
"df_analytics_counts.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Count the 'CORRECT', 'PARTIAL', and 'INCORRECT' entries for each participantId and elementInstanceId combination\n", | ||
"df_analytics_corr_temp = df_details.groupby(['participantId', 'elementInstanceId', 'courseId', 'correctness']).size().unstack(fill_value=0).reset_index()\n", | ||
"\n", | ||
"# Divide each of the correctness columns by the sum of all and rename them to meanCorrect, meanPartial, meanIncorrect\n", | ||
"df_analytics_corr_temp['sum'] = df_analytics_corr_temp['CORRECT'] + df_analytics_corr_temp['PARTIAL'] + df_analytics_corr_temp['INCORRECT']\n", | ||
"df_analytics_corr_temp['meanCorrect'] = df_analytics_corr_temp['CORRECT'] / df_analytics_corr_temp['sum']\n", | ||
"df_analytics_corr_temp['meanPartial'] = df_analytics_corr_temp['PARTIAL'] / df_analytics_corr_temp['sum']\n", | ||
"df_analytics_corr_temp['meanIncorrect'] = df_analytics_corr_temp['INCORRECT'] / df_analytics_corr_temp['sum']\n", | ||
"\n", | ||
"# Aggregate the correctness columns for each participantId and courseId\n", | ||
"df_analytics_correctness = df_analytics_corr_temp.groupby(['participantId', 'courseId']).agg({\n", | ||
" 'meanCorrect': 'sum',\n", | ||
" 'meanPartial': 'sum',\n", | ||
" 'meanIncorrect': 'sum'\n", | ||
"}).reset_index().rename(columns={\n", | ||
" 'meanCorrect': 'meanCorrectCount',\n", | ||
" 'meanPartial': 'meanPartialCount',\n", | ||
" 'meanIncorrect': 'meanWrongCount'\n", | ||
"})\n", | ||
"df_analytics_correctness.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Map the counts in the corresponding analytics dataframe to a single level\n", | ||
"df_analytics_counts.columns = df_analytics_counts.columns.map('_'.join).str.strip('_')\n", | ||
"df_analytics_counts = df_analytics_counts.rename(columns={\n", | ||
" 'score_sum': 'totalScore',\n", | ||
" 'pointsAwarded_sum': 'totalPoints',\n", | ||
" 'xpAwarded_sum': 'totalXp',\n", | ||
" 'timeSpent_sum': 'totalTimeSpent',\n", | ||
" 'elementInstanceId_count': 'trialsCount',\n", | ||
" 'elementInstanceId_nunique': 'responseCount'\n", | ||
"})\n", | ||
"df_analytics_counts.head()\n", | ||
"\n", | ||
"# Combine the analytics counts and correctness dataframes based on the unique participantId and courseId combinations\n", | ||
"df_analytics = pd.merge(df_analytics_counts, df_analytics_correctness, on=['participantId', 'courseId'])\n", | ||
"df_analytics.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Add Computed Metrics to the Database" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create daily analytics entries for all participants\n", | ||
"for index, row in df_analytics.iterrows():\n", | ||
" db.participantanalytics.upsert(\n", | ||
" where={\n", | ||
" 'type_courseId_participantId_timestamp': {\n", | ||
" 'type': 'DAILY',\n", | ||
" 'courseId': row['courseId'],\n", | ||
" 'participantId': row['participantId'],\n", | ||
" 'timestamp': specific_date + 'T00:00:00.000Z'\n", | ||
" }\n", | ||
" },\n", | ||
" data={\n", | ||
" 'create': {\n", | ||
" 'type': 'DAILY',\n", | ||
" 'timestamp': specific_date + 'T00:00:00.000Z',\n", | ||
" 'trialsCount': row['trialsCount'],\n", | ||
" 'responseCount': row['responseCount'],\n", | ||
" 'totalScore': row['totalScore'],\n", | ||
" 'totalPoints': row['totalPoints'],\n", | ||
" 'totalXp': row['totalXp'],\n", | ||
" 'meanCorrectCount': row['meanCorrectCount'],\n", | ||
" 'meanPartialCorrectCount': row['meanPartialCount'],\n", | ||
" 'meanWrongCount': row['meanWrongCount'],\n", | ||
" 'participant': {\n", | ||
" 'connect': {\n", | ||
" 'id': row['participantId']\n", | ||
" }\n", | ||
" },\n", | ||
" 'course': {\n", | ||
" 'connect': {\n", | ||
" 'id': row['courseId']\n", | ||
" }\n", | ||
" }\n", | ||
" },\n", | ||
" 'update': {}\n", | ||
" }\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Cleanup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"db.disconnect()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "analytics-3uz8SvN3-py3.12", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
16 changes: 16 additions & 0 deletions
16
...c/prisma/migrations/20240826113537_participant_analytics_correctness_counts/migration.sql
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
/* | ||
Warnings: | ||
|
||
- You are about to drop the column `meanFirstCorrectCount` on the `ParticipantAnalytics` table. All the data in the column will be lost. | ||
- You are about to drop the column `meanLastCorrectCount` on the `ParticipantAnalytics` table. All the data in the column will be lost. | ||
- You are about to drop the column `collectedAchievements` on the `ParticipantAnalytics` table. All the data in the column will be lost. | ||
|
||
*/ | ||
-- AlterTable | ||
ALTER TABLE "ParticipantAnalytics" DROP COLUMN "meanFirstCorrectCount", | ||
DROP COLUMN "meanLastCorrectCount", | ||
DROP COLUMN "collectedAchievements", | ||
ADD COLUMN "firstCorrectCount" REAL, | ||
ADD COLUMN "firstWrongCount" REAL, | ||
ADD COLUMN "lastCorrectCount" REAL, | ||
ADD COLUMN "lastWrongCount" REAL; |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Check failure
Code scanning / SonarCloud
PostgreSQL database passwords should not be disclosed