This project is based on the paper Fast-Forward Video Based on Semantic Extraction on the IEEE International Conference on Image Processing (ICIP 2016). It implements a semantic fast-forward method for First-Person videos.
For more information and visual results, please access the project page.
- Washington Luis de Souza Ramos - MSc student - UFMG - washington.ramos@outlook.com
- Michel Melo da Silva - PhD student - UFMG - michelms@dcc.ufmg.com
- Mario Fernando Montenegro Campos - Advisor - UFMG - mario@dcc.ufmg.br
- Erickson Rangel do Nascimento - Advisor - UFMG - erickson@dcc.ufmg.br
Federal University of Minas Gerais (UFMG)
Computer Science Department
Belo Horizonte - Minas Gerais -Brazil
VeRLab: Laboratory of Computer Vison and Robotics
http://www.verlab.dcc.ufmg.br
- MATALB 2015a or higher
- The project processing is decribed by the following flowchart:
-
Optical Flow Estimator:
The first step processing is to estimate the Optical Flow of the Input Video.
- First, you should download the Poleg et al. 2014 Flow Estimator code from the link.
- Navigate to the download folder and unzip the code.
- Into the Vid2OpticalFlowCSV\Example folder, run the command:
Vid2OpticalFlowCSV.exe -v < video_filename > -c < config.xml > -o < output_filename.csv >
Options | Description | Type | Example |
---|---|---|---|
< Video_filename > |
Path and filename of the video. | String | ~/Data/MyVideos/myVideo.mp4 |
< config.xml > |
Path to the configuration XML file. | String | ../default-config.xml |
< output_filename.csv > |
Path to save the output CSV file. | String | myVideo.csv |
Save the file using the same same name of the video file with extension ".csv".
-
Semantic Extractor:
The second step is to extract the semantic information over all frames of the Input video and save it in a CSV file. On the MATLAB console, go to the project folder and run the command:
>> ExtractAndSave(< Video_filename >)
Parameters | Description | Type | Example |
---|---|---|---|
< Video_filename > |
Path and filename of the video. | String | ~/Data/MyVideos/Video.mp4 |
-
Calculate Speed-up rates
To calculate the speed-up rates for each type of segment, on the MATLAB console, go to the project folder and run the following commands:
>> [~, < Num_non_semantic_Frames >, < Num_semantic_frames >] = GetSemanticRanges(< Semantic_Data_MAT_filename >);
Parameters | Description | Type | Example |
---|---|---|---|
< Semantic_Data_MAT_filename > |
File created by the step 2 | String | '../example_face_extracted.mat' |
Output | Description | Type | Example |
---|---|---|---|
< Num_non_semantic_Frames > |
Number of frames in the Non-Semantic segments. (Will be used below.) | Integer | Tns |
< Num_semantic_Frames > |
Number of frames in the Semantic segments. (Will be used below.) | Integer | Ts |
-
Calculate Speed-up rates
To calculate the speed-up rates for each type of segment, on the MATLAB console, go to the project folder and run the command:
>> SpeedupOptimization( < Num_non_semantic_Frames >, < Num_semantic_frames >, < Desired_speedup >, < Max_speedup>, < lambda_1 >, < lambda_2 >, < show_plot > )
Parameters | Description | Type | Example |
---|---|---|---|
< Num_non_semantic_Frames > |
Number of frames in the Non-Semantic segments. | Integer | 7643 |
< Num_semantic_Frames > |
Number of frames in the Semantic segments. | Integer | 12935 |
< Desired_speedup > |
Desired speed-up rate to the whole video. | Integer | 10 |
< Max_speedup > |
Maximum allowed jump. | Integer | 10 |
< Lambda_1 > |
Value of Lambda 1 in the optimization function. | Integer | 40 |
< Lambda_2 > |
Value of Lambda 1 in the optimization function. | Integer | 8 |
< show_plot > |
Flag to show the search space create by the optimization function. | Boolean | false |
-
Create Experiment:
To run the code, you should create an experiment entry. On a text editor, add a case to the
GetVideoDetails
function in the fileSemanticSequenceLibrary.m
:
function [videoFile, startInd, endInd, filename, fps] = GetVideoDetails(video_dir,exp_name)
...
case < Experiment_name >
filename = < video_filename >;
startInd = < start_index_frame > ;
endInd = < final_index_frame >;
fps = < video_frames_per_second >;
...
Fields | Description | Type | Example |
---|---|---|---|
< Experiment_name > |
Name to identify the experiment. | String | MyVideo |
< video_filename > |
Filename to the video. | String | myVideo.mp4 |
< start_index_frame > |
Frame index to start the processing. | Integer | 1 |
< final_index_frame > |
Frame intex to stop the processing. | Integer | 16987 |
< video_frames_per_second > |
Frames per second of the video. | Integer | 30 |
-
Semantic Fast-Forward:
After the previous steps, you are ready to accelerate the Input Video. On MATLAB console, go to the project folder and run the command:
>> SpeedupVideo(< Video_dir >, < Experiment_name >, < Semantic_extractor_name >, < Semantic_speedup >, < Non_semantic_speedup >, < Shakiness_weights >, < Velocity_weights >, < Appearance_weights >, < Semantic_weights > )
Parameters | Description | Type | Example |
---|---|---|---|
< Video_dir > |
Path to the folder where the video file is. | String | ~/Data/MyVideos |
< Experiment_name > |
Name set in the SemanticSequenceLibrary.m file. | String | My_Video |
< Semantic_extractor_name > |
Semantic extractor algorithm used in the Semantic Extractor step. | String | 'face' or 'pedestrian' |
< Semantic_speedup > |
Desired speed-up assign to the semantic segments of the input video. | Integer | 3 |
< Non_semantic_speedup > |
Desired speed-up assign to the semantic segments of the input video. | Integer | 14 |
< Shakiness_weights > |
Tuple of weights related to the shakiness term in the edge weight formulation. | [Integer, Integer] | [10,250] |
< Velocity_weights > |
Tuple of weights related to the shakiness term in the edge weight formulation. | [Integer, Integer] | [50,3000] |
< Appearance_weights > |
Tuple of weights related to the shakiness term in the edge weight formulation. | [Integer, Integer] | [0,100] |
< Semantic_weights > |
Tuple of weights related to the shakiness term in the edge weight formulation. | [Integer, Integer] | [500,8] |
- EgoSampling: Y. Poleg, T. Halperin, C. Arora, S. Peleg, Egosampling: Fast-forward and stereo for egocentric videos, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4768-4776. doi:10.1109/CVPR.2015.7299109.
- LK_Blocked_Optical_Flow: Y. Poleg, C. Arora, S. Peleg, Temporal segmentation of egocentric videos, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2537-2544. doi:10.1109/CVPR.2014.325.
- NPD_Face_Detector: S. Liao, A. K. Jain, S. Z. Li, A fast and accurate unconstrained face detector, IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (2) (2016), pp. 211-223. doi:10.1109/TPAMI.2015.2448075.
If you are using it for academic purposes, please cite:
W. L. S. Ramos, M. M. Silva, , M. F. M. Campos, E. R. Nascimento, Fast-forward video based on semantic extraction, in: -IEEE International Conference on Image Processing, Phoenix, AZ, 2016, pp. 3334-3338. doi:10.1109/ICIP.2016.7532977.
@InProceedings{Ramos2016,
author = {W. L. S. Ramos and M. M. Silva and M. F. M. Campos and E. R. Nascimento},
booktitle = {IEEE International Conference on Image Processing},
title = {Fast-forward video based on semantic extraction},
year = {2016},
month = {Sept},
Address = {Phoenix, AZ},
pages = {3334-3338},
doi = {10.1109/ICIP.2016.7532977}
}