-
-
Notifications
You must be signed in to change notification settings - Fork 445
Models
Vladimir Mandic edited this page Dec 16, 2024
·
11 revisions
List of popular text-to-image generative models with their respective parameters and architecture overview
Original URL: https://github.com/vladmandic/automatic/wiki/Models
Publisher | Model | Version | Size | Diffusion Architecture | Model Params | Text Encoder(s) | TE Params | Auto Encoder | Other |
---|---|---|---|---|---|---|---|---|---|
StabilityAI | Stable Diffusion | 1.5 | 2.28GB | UNet | 0.86B | CLiP ViT-L | 0.12B | VAE | |
StabilityAI | Stable Diffusion | 2.1 | 2.58GB | UNet | 0.86B | CLiP ViT-H | 0.34B | VAE | |
StabilityAI | Stable Diffusion | XL | 6.94GB | UNet | 2.56B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
StabilityAI | Stable Diffusion | 3.0 Medium | 15.14GB | MMDiT | 2.0B | CLiP ViT-L + ViT+G + T5-XXL | 0.12B + 0.69B + 4.76B | 16ch VAE | |
StabilityAI | Stable Diffusion | 3.5 Medium | 15.89GB | MMDiT | 2.25B | CLiP ViT-L + ViT+G + T5-XXL | 0.12B + 0.69B + 4.76B | 16ch VAE | |
StabilityAI | Stable Diffusion | 3.5 Large | 26.98GB | MMDiT | 8.05B | CLiP ViT-L + ViT+G + T5-XXL | 0.12B + 0.69B + 4.76B | 16ch VAE | |
StabilityAI | Stable Cascade | Medium | 11.82GB | Multi-stage UNet | 1.56B + 3.6B | CLiP ViT-G | 0.69B | 42x VQE | |
StabilityAI | Stable Cascade | Lite | 4.97GB | Multi-stage UNet | 0.7B + 1.0B | CLiP ViT-G | 0.69B | 42x VQE | |
Black Forest Labs | Flux | 1 Dev/Schnell | 32.93GB | MMDiT | 11.9B | CLiP ViT-L + T5-XXL | 0.12B + 4.769B | 16ch VAE | |
NVLabs | Sana | 1600M | 12.63GB | MMDiT | 1.60B | Gemma2 | 2.61B | DC-AE | |
NVLabs | Sana | 600M | 7.51GB | MMDiT | 0.59B | Gemma2 | 2.61B | DC-AE | |
FAL | AuraFlow | 0.3 | 31.90GB | MMDiT | 6.8B | UMT5 | 12.1B | VAE | |
AlphaVLLM | Lumina | Next SFT | 8.67GB | DiT | 1.7B | Gemma | 2.5B | VAE | LM |
PixArt | Alpha | XL 2 | 21.3GB | DiT | 0.61B | T5-XXL | 4.76B | VAE | |
PixArt | Sigma | XL 2 | 21.3GB | DiT | 0.61B | T5-XXL | 4.76B | VAE | |
Segmind | SSD-1B | N/A | 8.72GB | UNet | 1.33B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Segmind | Vega | N/A | 6.43GB | UNet | 0.75B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Segmind | Tiny | N/A | 1.03GB | UNet | 0.32B | CLiP ViT-L | 0.12B | VAE | |
Kwai | Kolors | N/A | 17.40GB | UNnet | 2.58B | ChatGLM | 6.24B | VAE | LM |
PlaygroundAI | Playground | 1.0 | 4.95GB | UNet | 0.86B | CLiP ViT-L | 0.12B | VAE | |
PlaygroundAI | Playground | 2.x | 13.35GB | UNet | 2.56B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Tencent | HunyuanDiT | 1.2 | 14.09GB | DiT | 1.5B | BERT + T5-XL | 3.52B + 1.67B | VAE | LM |
Warp AI | Wuerstchen | N/A | 12.16GB | Multi-stage UNet | 1.0B + 1.05B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | 42x VQE | |
Kandinsky | Kandinsky | 2.2 | 5.15GB | Unet | 1.25B | CLiP ViT-G | 0.69B | VQ | |
Kandinsky | Kandinsky | 3.0 | 27.72GB | Unet | 3.05B | T5-XXXL | 8.72B | VQ | |
Thudm | CogView | 3 Plus | 24.96GB | DiT | 2.85B | T5-XXL | 4.76B | VAE | |
IDKiro | SDXS | N/A | 2.05GB | UNet | 0.32B | CLiP ViT-L | 0.12B | VAE | |
Open-MUSE | aMUSEd | 256 | 3.41GB | ViT | 0.60B | CLiP ViT-L | 0.12B | VQ | |
Koala | Koala | 700M | 6.58GB | UNet | 0.78B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Thu-ML | UniDiffuser | v1 | 5.37GB | U-ViT | 0.95B | CLiP ViT-L + CLiP ViT-B | 0.12B + 0.16B | VAE | |
Salesforce | BLIP-Diffusion | N/A | 7.23GB | UNet | 0.86B | CLiP ViT-L + BLiP-2 | 0.12B + 0.49B | VAE | |
DeepFloyd | IF | M | 12.79GB | Multi-stage UNet | 0.37B + 0.46B | T5-XXL | 4.76B | Pixel | |
DeepFloyd | IF | L | 15.48GB | Multi-stage UNet | 0.61B + 0.93B | T5-XXL | 4.76B | Pixel | |
MeissonFlow | Meissonic | N/A | 3.64GB | DiT | 1.18B | CLiP ViT-H | 0.35B | VQ | |
VectorSpaceLab | OmniGen | v1 | 15.47GB | Transformer | 3.76B | None | 0 | VAE | Phi-3 |
- Created using SD.Next built-in model analyzer
- Number of parameters is proportional to model complexity and ability to learn
Quality of generated images is also influenced by training data and duration of training - Size refers to original model variant in 16bit precision where available
Quantized variations may be smaller - Distilled variants are not included as typical goal-distilling does not change underlying model params
e.g. Turbo/LCM/Hyper/Lightning/etc. or even Dev/Schnell