Skip to content
View vmsantos's full-sized avatar
  • 17:20 (UTC -03:00)

Highlights

  • Pro

Block or report vmsantos

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
vmsantos/README.md

Pinned Loading

  1. Direct links to Lecture Notes in Mat... Direct links to Lecture Notes in Mathematics full books
    1
    ## Direct links to Lecture Notes in Mathematics (Part 1)
    2
    
                  
    3
    *-Autonomous Categories - Michael Barr (1979) (<a href="http://link.springer.com/content/pdf/bfm%3A978-3-540-34850-4%2F1.pdf" title="Front Matter">[1]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0064580.pdf" title="Preliminaries">[2]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0064581.pdf" title="Extensions of structure">[3]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0064582.pdf" title="The category G.">[4]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0064583.pdf" title="Examples">[5]</a>, <a href="http://link.springer.com/content/pdf/bbm%3A978-3-540-34850-4%2F1.pdf" title="Back Matter">[6]</a>)
    4
    
                  
    5
    1-Dimensional Cohen-Macaulay Rings - Eben Matlis (1973) (<a href="http://link.springer.com/content/pdf/bfm%3A978-3-540-46923-0%2F1.pdf" title="Front Matter">[1]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061667.pdf" title="h-Divisible and cotorsion modules">[2]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061668.pdf" title="Completions">[3]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061669.pdf" title="Compatible extensions">[4]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061670.pdf" title="Localizations">[5]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061671.pdf" title="Artinian divisible modules">[6]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061672.pdf" title="Strongly unramified ring extensions">[7]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061673.pdf" title="The closed components of R">[8]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061674.pdf" title="Simple divisible modules">[9]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061675.pdf" title="Semi-simple and uniserial divisible modules">[10]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061676.pdf" title="The integral closure">[11]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061677.pdf" title="The primary decomposition">[12]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061678.pdf" title="The first neighborhood ring">[13]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061679.pdf" title="Gorenstein rings">[14]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061680.pdf" title="Multiplicities">[15]</a>, <a href="http://link.springer.com/content/pdf/10.1007%2FBFb0061681.pdf" title="The canonical ideal of R">[16]</a>, <a href="http://link.springer.com/content/pdf/bbm%3A978-3-540-46923-0%2F1.pdf" title="Back Matter">[17]</a>)