Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: fix RTF calculation #70

Merged
merged 2 commits into from
Mar 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions src/so_vits_svc_fork/inference/infer_tool.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,10 +209,9 @@ def infer(
predict_f0=auto_predict_f0,
noice_scale=noise_scale,
)[0, 0].data.float()
realtime_coef = len(audio) / (t.elapsed * self.target_sample)
audio_duration = audio.shape[-1] / self.target_sample
LOG.info(
f"Inferece time: {t.elapsed:.2f}s, Realtime coef: {realtime_coef:.2f} "
f"Input shape: {audio.shape}, Output shape: {audio.shape}"
f"Inferece time: {t.elapsed:.2f}s, RTF: {t.elapsed / audio_duration:.2f}"
)
return audio, audio.shape[-1]

Expand Down
9 changes: 6 additions & 3 deletions src/so_vits_svc_fork/inference_main.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ def realtime(
f"Input Device: {devices[input_device]['name']}, Output Device: {devices[output_device]['name']}"
)

# the model realtime coef is somewhat significantly low only in the first inference
# the model RTL is somewhat significantly high only in the first inference
# there could be no better way to warm up the model than to do a dummy inference
# (there are not differences in the behavior of the model between the first and the later inferences)
# so we do a dummy inference to warm up the model (1 second of audio)
Expand Down Expand Up @@ -211,7 +211,10 @@ def callback(
outdata[:] = (indata + inference) / 2
else:
outdata[:] = inference
LOG.info(f"True Realtime coef: {block_seconds / t.elapsed:.2f}")
rtf = t.elapsed / block_seconds
LOG.info(f"Realtime inference time: {t.elapsed:.3f}s, RTF: {rtf:.3f}")
if rtf > 1:
LOG.warning("RTF is too high, consider increasing block_seconds")

with sd.Stream(
device=(input_device, output_device),
Expand All @@ -221,6 +224,6 @@ def callback(
blocksize=int(block_seconds * svc_model.target_sample),
latency="low",
) as stream:
LOG.info(f"Latency: {stream.latency}")
while True:
LOG.info(f"Latency: {stream.latency}")
sd.sleep(1000)
69 changes: 40 additions & 29 deletions src/so_vits_svc_fork/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
import requests
import torch
import torchcrepe
from cm_time import timer
from numpy import dtype, float32, ndarray
from scipy.io.wavfile import read
from torch import FloatTensor, Tensor
Expand Down Expand Up @@ -245,20 +246,24 @@ def compute_f0(
method: Literal["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"] = "crepe",
**kwargs,
):
wav_numpy = wav_numpy.astype(np.float32)
wav_numpy /= np.quantile(np.abs(wav_numpy), 0.999)
if method in ["dio", "harvest"]:
return compute_f0_pyworld(wav_numpy, p_len, sampling_rate, hop_length, method)
elif method == "crepe":
return compute_f0_crepe(wav_numpy, p_len, sampling_rate, hop_length, **kwargs)
elif method == "crepe-tiny":
return compute_f0_crepe(
wav_numpy, p_len, sampling_rate, hop_length, model="tiny", **kwargs
)
elif method == "parselmouth":
return compute_f0_parselmouth(wav_numpy, p_len, sampling_rate, hop_length)
else:
raise ValueError("type must be dio, crepe, harvest or parselmouth")
with timer() as t:
wav_numpy = wav_numpy.astype(np.float32)
wav_numpy /= np.quantile(np.abs(wav_numpy), 0.999)
if method in ["dio", "harvest"]:
f0 = compute_f0_pyworld(wav_numpy, p_len, sampling_rate, hop_length, method)
elif method == "crepe":
f0 = compute_f0_crepe(wav_numpy, p_len, sampling_rate, hop_length, **kwargs)
elif method == "crepe-tiny":
f0 = compute_f0_crepe(
wav_numpy, p_len, sampling_rate, hop_length, model="tiny", **kwargs
)
elif method == "parselmouth":
f0 = compute_f0_parselmouth(wav_numpy, p_len, sampling_rate, hop_length)
else:
raise ValueError("type must be dio, crepe, harvest or parselmouth")
rtf = t.elapsed / (len(wav_numpy) / sampling_rate)
LOG.info(f"F0 inference time: {t.elapsed:.3f}s, RTF: {rtf:.3f}")
return f0


def f0_to_coarse(f0: torch.Tensor | float):
Expand Down Expand Up @@ -338,21 +343,27 @@ def get_hubert_model():


def get_hubert_content(hmodel, wav_16k_tensor):
feats = wav_16k_tensor
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_16k_tensor.device),
"padding_mask": padding_mask.to(wav_16k_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = hmodel.extract_features(**inputs)
feats = hmodel.final_proj(logits[0])
return feats.transpose(1, 2)
with timer() as t:
feats = wav_16k_tensor
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_16k_tensor.device),
"padding_mask": padding_mask.to(wav_16k_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = hmodel.extract_features(**inputs)
feats = hmodel.final_proj(logits[0])
res = feats.transpose(1, 2)
wav_len = wav_16k_tensor.shape[-1] / 16000
LOG.info(
f"HuBERT inference time : {t.elapsed:.3f}s, RTF: {t.elapsed / wav_len:.3f}"
)
return res


def get_content(cmodel: Any, y: ndarray) -> ndarray:
Expand Down