Code for "A BERT-based Distractor Generation Scheme with Multi-tasking and Negative Answer Training Strategies."
Paper
Updated result using BART. BART model is uploaded in HuggingFace model hub.
model | BLEU1 | BLEU2 | BLEU3 | BLEU4 | ROUGEL |
---|---|---|---|---|---|
BERT DG | 35.30 | 20.65 | 13.66 | 9.53 | 31.11 |
BERT DG pm | 39.81 | 24.81 | 17.66 | 13.56 | 34.01 |
BERT DG an+pm | 39.52 | 24.29 | 17.28 | 13.28 | 33.40 |
BART DG | 40.76 | 26.40 | 19.14 | 14.65 | 35.53 |
BART DG pm | 41.85 | 27.45 | 20.47 | 16.33 | 37.15 |
BART DG an+pm | 40.26 | 25.86 | 18.85 | 14.65 | 35.64 |
- higher is better
model | Count BLEU1 > 0.95 |
---|---|
BERT DG | 115 |
BERT DG pm | 57 |
BERT DG an+pm | 43 |
BART DG | 110 |
BART DG pm | 60 |
BART DG an+pm | 23 |
Gold | 12 |
- lower is better
Distractor: https://huggingface.co/voidful/bart-distractor-generation
Distractor PM: https://huggingface.co/voidful/bart-distractor-generation-pm
Distractor AN+PM: https://huggingface.co/voidful/bart-distractor-generation-both
Trained model available on release:
https://github.com/voidful/BDG/releases/tag/v1.0
Colab notebook for using pre trained model:
https://colab.research.google.com/drive/1yA3Rex9JHKJmc52E3YdsBQ4eQ_R6kEZB?usp=sharing
If you make use of the code in this repository, please cite the following papers:
@inproceedings{chung-etal-2020-BERT,
title = "A {BERT}-based Distractor Generation Scheme with Multi-tasking and Negative Answer Training Strategies.",
author = "Chung, Ho-Lam and
Chan, Ying-Hong and
Fan, Yao-Chung",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.393",
pages = "4390--4400",
abstract = "In this paper, we investigate the following two limitations for the existing distractor generation (DG) methods. First, the quality of the existing DG methods are still far from practical use. There are still room for DG quality improvement. Second, the existing DG designs are mainly for single distractor generation. However, for practical MCQ preparation, multiple distractors are desired. Aiming at these goals, in this paper, we present a new distractor generation scheme with multi-tasking and negative answer training strategies for effectively generating \textit{multiple} distractors. The experimental results show that (1) our model advances the state-of-the-art result from 28.65 to 39.81 (BLEU 1 score) and (2) the generated multiple distractors are diverse and shows strong distracting power for multiple choice question.",
}
pip install -r requirement.txt
Inside data_preprocessing
folder.
Download dataset here, put it into distractor
folder.
run convert_data.py
to do preprocessing.
run dataset_stat.py
for dataset statistics.
using tfkit==0.7.0 and transformers==4.4.2
tfkit-train --savedir ./race_cqa_gen_d_bart/ --train ./race_train_updated_cqa_dsep_a_bart.csv --test ./race_test_updated_cqa_dsep_a_bart.csv --model seq2seq --config facebook/bart-base --batch 9 --epoch 10 --grad_accum 2 --no_eval;
tfkit-train --savedir ./race_cqa_gen_d_bart_pm/ --train ./race_train_updated_cqa_dsep_a_bart.csv --test ./race_test_updated_cqa_dsep_a_bart.csv --model seq2seq --config facebook/bart-base --batch 9 --epoch 10 --grad_accum 2 --no_eval --likelihood pos;
tfkit-train --savedir ./race_cqa_gen_d_bart_both/ --train ./race_train_updated_cqa_dsep_a_bart.csv --test ./race_test_updated_cqa_dsep_a_bart.csv --model seq2seq --config facebook/bart-base --batch 9 --epoch 10 --grad_accum 2 --no_eval --likelihood both;
using environment from requirement.txt
run the following in main dir:
tfkit-train --maxlen 512 --savedir ./race_cqa_gen_d/ --train ./data_preprocessing/processed_data/race_train_updated_cqa_dsep_a.csv --test ./data_preprocessing/processed_data/race_test_updated_cqa_dsep_a.csv --model onebyone --tensorboard --config bert-base-cased --batch 30 --epoch 6;
tfkit-train --maxlen 512 --savedir ./race_cqa_gen_d_an/ --train ./data_preprocessing/processed_data/race_train_updated_cqa_dsep_a.csv --test ./data_preprocessing/processed_data/race_test_updated_cqa_dsep_a.csv --model onebyone-neg --tensorboard --config bert-base-cased --batch 30 --epoch 6;
tfkit-train --maxlen 512 --savedir ./race_cqa_gen_d_pm/ --train ./data_preprocessing/processed_data/race_train_updated_cqa_dsep_a.csv --test ./data_preprocessing/processed_data/race_test_updated_cqa_dsep_a.csv --model onebyone-pos --tensorboard --config bert-base-cased --batch 30 --epoch 6;
tfkit-train --maxlen 512 --savedir ./race_cqa_gen_d_both/ --train ./data_preprocessing/processed_data/race_train_updated_cqa_dsep_a.csv --test ./data_preprocessing/processed_data/race_test_updated_cqa_dsep_a.csv --model onebyone-both --tensorboard --config bert-base-cased --batch 30 --epoch 6;
tfkit-eval --model model_path --valid ./data_preprocessing/processed_data/race_test_updated_cqa_dall.csv --metric nlg
Inside distractor analysis
folder
preprocess_model_result.py
for result preprocessing and statistics.normalize_jsonl_file.py
merge different model result with same question and context.create_rank_dataset.py
prepare data for Entropy Maximization.
git clone https://github.com/huggingface/transformers
cp our transformer file into huggingface/transformers
Based on the script run_multiple_choice.py
.
Download race data
Train
#training on 4 tesla V100(16GB) GPUS
export RACE_DIR=../RACE
python ./examples/run_multiple_choice.py \
--model_type roberta \
--task_name race \
--model_name_or_path roberta-base-openai-detector \
--do_train \
--do_eval \
--data_dir $RACE_DIR \
--learning_rate 1e-5 \
--num_train_epochs 10 \
--max_seq_length 512 \
--output_dir ./roberta-base-openai-race \
--per_gpu_eval_batch_size=9 \
--per_gpu_train_batch_size=9 \
--gradient_accumulation_steps 2 \
--save_steps 5000 \
--eval_all_checkpoints \
--seed 77
export RACE_DIR=../multi_dist_normalized_jsonl/xxx.jsonl
python ./examples/run_multiple_choice.py \
--model_type roberta \
--task_name race \
--model_name_or_path ../roberta-base-openai-race/ \
--do_test \
--data_dir $RACE_DIR \
--max_seq_length 512 \
--per_gpu_eval_batch_size=3 \
--output_dir ./race_test_result \
--overwrite_cache