This project is an AI application that recognizes drawings based on the Quick, Draw! dataset. The application uses a convolutional neural network (CNN) to predict the category of a doodle drawn on a 28 x 28 grid.
- Python 3.x
- Pip (Python package installer)
- A virtual environment (recommended)
-
Clone the Repository
git clone https://github.com/vukvukovich/guess-that-animal-doodle.git cd guess-that-animal-doodle
-
Create a Virtual Environment and install tensorflow
Follow Apple guide from here.
-
Install the Required Packages
pip install -r requirements.txt
-
Prepare Datasets
Download the .npy files for different animal categories from the Google Quick, Draw! Dataset. Place them in the
ml/datasets
directory. Make sure to rename the files and naming convention is respected e.g. new-animal.npy.
- Train the Model
python ml/train.py
- Start the Flask Application
python app.py
- Open Your Browser
Navigate to http://127.0.0.1:5000/ to access the application.
guess-that-animal-doodle/
├── app.py
├── ml
│ ├── datasets
│ │ ├── bear.npy
│ │ ├── bird.npy
│ │ ├── cat.npy
│ │ ├── cow.npy
│ │ ├── dog.npy
│ │ ├── elephant.npy
│ │ ├── fish.npy
│ │ ├── giraffe.npy
│ │ ├── horse.npy
│ │ ├── lion.npy
│ │ ├── monkey.npy
│ │ ├── mouse.npy
│ │ ├── pig.npy
│ │ └── sheep.npy
│ ├── models
│ │ └── quickdraw_cnn_model_some_animals.keras
│ └── train.py
├── static
│ ├── css
│ │ └── style.css
│ ├── images
│ │ └── logo.webp
│ └── js
│ └── script.js
├── templates
│ └── index.html
├── requirements.txt
└── README.md