Skip to content

we0091234/yolov8-tensorrt

Repository files navigation

yolov8 TensorRT

The Pytorch implementation is https://github.com/ultralytics/ultralytics.

onnx model

step1. install yolov8

 pip install ultralytics

step2. download yolov8 model from https://github.com/ultralytics/assets/releases

step3. convert yolov8 model to onnx

yolo mode=export model=yolov8n.pt format=onnx simplify=True

or you can download onnx model from here z16b

How to Run, yolov8n as example

  1. Modify the tensorrt cuda opencv path in CMakeLists.txt

    #cuda 
    include_directories(/mnt/Gu/softWare/cuda-11.0/targets/x86_64-linux/include)
    link_directories(/mnt/Gu/softWare/cuda-11.0/targets/x86_64-linux/lib)
    
    #tensorrt 
    include_directories(/mnt/Gpan/tensorRT/TensorRT-8.2.0.6/include/)
    link_directories(/mnt/Gpan/tensorRT/TensorRT-8.2.0.6/lib/)
    
  2. build

    1. mkdir build
    2. cd build
    3. cmake ..
    4. make
    
    
  3. onnx to tensorrt model

    ./onnx2trt/onnx2trt  ../onnx_model/yolov8n.onnx ./yolov8n.trt  1
    
    
  4. inference

    ./yolov8 ./yolov8n.trt  ../samples/
    

    The results are saved in the build folder.

    image

contact

Tencent qq group: 871797331