The Pytorch implementation is https://github.com/ultralytics/ultralytics.
step1. install yolov8
pip install ultralytics
step2. download yolov8 model from https://github.com/ultralytics/assets/releases
step3. convert yolov8 model to onnx
yolo mode=export model=yolov8n.pt format=onnx simplify=True
or you can download onnx model from here z16b
-
Modify the tensorrt cuda opencv path in CMakeLists.txt
#cuda include_directories(/mnt/Gu/softWare/cuda-11.0/targets/x86_64-linux/include) link_directories(/mnt/Gu/softWare/cuda-11.0/targets/x86_64-linux/lib) #tensorrt include_directories(/mnt/Gpan/tensorRT/TensorRT-8.2.0.6/include/) link_directories(/mnt/Gpan/tensorRT/TensorRT-8.2.0.6/lib/)
-
build
1. mkdir build 2. cd build 3. cmake .. 4. make
-
onnx to tensorrt model
./onnx2trt/onnx2trt ../onnx_model/yolov8n.onnx ./yolov8n.trt 1
-
inference
./yolov8 ./yolov8n.trt ../samples/
The results are saved in the build folder.
Tencent qq group: 871797331