Dogs vs. Cats Redux: Kernels Edition
- Keras with VGG16 pre-trained model, Transfer Learning Practice
- Add 2 layer on top, like below
output = GlobalAveragePooling2D()(output)
model_vgg16_pred = Dense(2, activation='softmax')(output)
-
a
fit_generator
,evaluate_generator
,predict_generator
way to handle data. Keep eyes onsteps
,steps_per_epoch
,validation_steps
,epochs
, etc. -
better loss & metrics to train model faster and better.
model_vgg16_model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['binary_accuracy'])