Skip to content

wkklavis/DAPSAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation (DAPSAM)

This is the official code of our MICCAI 2024 paper DAPSAM 🥳

Requirement

pip install -r requirements.txt

Data Preparation

Prostate Segmentation

RIGA+ Segmentation

Please download the pretrained SAM model (provided by the original repository of SAM) and put it in the ./pretrained folder.

What's more, we also provide well-trained models at Release. Please put it in the ./snapshot folder for evaluation.

Prostate Segmentation

We take the setting using RUNMC (source domain) and other five datasets (target domains) as the example.

cd prostate
# Training
CUDA_VISIBLE_DEVICES=0 python train.py --root_path dataset_path --output output_path --Source_Dataset RUNMC --Target_Dataset BIDMC BMC HK I2CVB UCL
# Test
CUDA_VISIBLE_DEVICES=0 python test.py --root_path dataset_path --output_dir output_path --Source_Dataset RUNMC --Target_Dataset BIDMC BMC HK I2CVB UCL --snapshot snapshot_path

RIGA+ Segmentation

We take the setting using BinRushed (source domain) and other three datasets (target domains) as the example.

cd fundus
# Training
CUDA_VISIBLE_DEVICES=0 python train.py --root_path dataset_path --output output_path --Source_Dataset BinRushed --Target_Dataset MESSIDOR_Base1 MESSIDOR_Base2 MESSIDOR_Base3
# Test
CUDA_VISIBLE_DEVICES=0 python test.py --root_path dataset_path --output output_path --Source_Dataset BinRushed --Target_Dataset MESSIDOR_Base1 MESSIDOR_Base2 MESSIDOR_Base3 --snapshot snapshot_path

Cite

If you find this code useful, please cite

@inproceedings{wei2024prompting,
  title={Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation},
  author={Wei, Zhikai and Dong, Wenhui and Zhou, Peilin and Gu, Yuliang and Zhao, Zhou and Xu, Yongchao},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={533--543},
  year={2024},
  organization={Springer}
}

Acknowledgement

We appreciate the developers of Segment Anything Model. The code of DAPSAM is built upon SAMed, and we express our gratitude to these projects.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages