Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation (DAPSAM)
This is the official code of our MICCAI 2024 paper DAPSAM 🥳
pip install -r requirements.txt
Please download the pretrained SAM model (provided by the original repository of SAM) and put it in the ./pretrained folder.
What's more, we also provide well-trained models at Release. Please put it in the ./snapshot folder for evaluation.
We take the setting using RUNMC (source domain) and other five datasets (target domains) as the example.
cd prostate
# Training
CUDA_VISIBLE_DEVICES=0 python train.py --root_path dataset_path --output output_path --Source_Dataset RUNMC --Target_Dataset BIDMC BMC HK I2CVB UCL
# Test
CUDA_VISIBLE_DEVICES=0 python test.py --root_path dataset_path --output_dir output_path --Source_Dataset RUNMC --Target_Dataset BIDMC BMC HK I2CVB UCL --snapshot snapshot_path
We take the setting using BinRushed (source domain) and other three datasets (target domains) as the example.
cd fundus
# Training
CUDA_VISIBLE_DEVICES=0 python train.py --root_path dataset_path --output output_path --Source_Dataset BinRushed --Target_Dataset MESSIDOR_Base1 MESSIDOR_Base2 MESSIDOR_Base3
# Test
CUDA_VISIBLE_DEVICES=0 python test.py --root_path dataset_path --output output_path --Source_Dataset BinRushed --Target_Dataset MESSIDOR_Base1 MESSIDOR_Base2 MESSIDOR_Base3 --snapshot snapshot_path
If you find this code useful, please cite
@inproceedings{wei2024prompting,
title={Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation},
author={Wei, Zhikai and Dong, Wenhui and Zhou, Peilin and Gu, Yuliang and Zhao, Zhou and Xu, Yongchao},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={533--543},
year={2024},
organization={Springer}
}
We appreciate the developers of Segment Anything Model. The code of DAPSAM is built upon SAMed, and we express our gratitude to these projects.