Skip to content

wq1999/wbdc2021-semi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2021中国高校计算机大赛-微信大数据挑战赛复赛代码说明

本次比赛基于脱敏和采样后的数据信息,对于给定的一定数量到访过微信视频号“热门推荐”的用户,根据这些用户在视频号内的历史n天的行为数据,通过算法在测试集上预测出这些用户对于不同视频内容的互动行为(包括点赞、点击头像、收藏、转发等)的发生概率。

本次比赛以多个行为预测结果的加权uAUC值进行评分。大赛官方网站:https://algo.weixin.qq.com/

1. 环境配置

  • pandas>=1.0.5
  • numba>=0.45.1
  • scipy>=1.3.1
  • deepctr==0.8.5
  • tensorflow-gpu==1.13.1
  • numpy==1.18.5
  • python3
  • 其他见requirements.txt文件

2. 目录结构

./
├── README.md
├── requirements.txt, python package requirements 
├── init.sh, script for installing package requirements
├── train.sh, script for preparing train/inference data and training models, including pretrained models
├── inference.sh, script for inference 
├── src
│   ├── prepare, codes for preparing train/test dataset
|   ├── train, codes for training
|   ├── test, codes for test
|   ├── evaluation.py, (optional) main function for evaluation 
│   ├── model, codes for model architecture
├── data
│   ├── wedata, dataset of the competition
│   ├── submission, prediction result after running inference.sh
│   ├── model, params and model
|   ├── dl, data for nn model
├── config, some file path config

3. 运行流程

  • 安装环境:sh init.sh
  • 进入目录:cd /home/tione/notebook/wbdc2021-semi
  • 数据准备和模型训练:sh train.sh
  • 预测并生成结果文件:sh inference.sh ../wbdc2021/data/wedata/wechat_algo_data2/test_a.csv

4. 模型及特征

模型:Share_Bottom

  • 参数:
    • batch_size: 2048
    • emded_dim: 20
    • num_epochs: 3
    • learning_rate: 0.02
    • bottom_dnn_units=[128, 128, 64], tower_dnn_units_lists=[[64, 32], [64, 32], [64, 32], [64, 32], [64, 32], [64, 32], [64, 32]]
  • 特征:
    • sparse特征: userid, feedid, authorid, bgm_singer_id, bgm_song_id, tag, keyword等
    • dense 特征:videoplayseconds和user-feed embedding

模型: MMoE

  • 参数:
    • batch_size: 2048
    • emded_dim: 20
    • num_epochs: 2
    • learning_rate: 0.02
    • num_experts=64, expert_dnn_units=[128, 64], gate_dnn_units=[32, 32], tower_dnn_units_lists=[[64, 32], [64, 32], [64, 32], [64, 32], [64, 32], [64, 32], [64, 32]]
  • 特征:
    • sparse特征: userid, feedid, authorid, bgm_singer_id, bgm_song_id, tag, keyword等
    • dense 特征:videoplayseconds和user-feed embedding

模型:PLE

  • 参数:
    • batch_size: 2048
    • emded_dim: 20
    • num_epochs: 2
    • learning_rate: 0.02
    • num_levels=2, num_experts_specific=8, num_experts_shared=4, expert_dnn_units=[128, 64, 32], gate_dnn_units=[16, 16], tower_dnn_units_lists=[[64, 32], [64, 32], [64, 32], [64, 32], [64, 32], [64, 32], [64, 32]]
  • 特征:
    • sparse特征: userid, feedid, authorid, bgm_singer_id, bgm_song_id, tag, keyword等
    • dense 特征:videoplayseconds和user-feed embedding

5. 算法性能

  • 资源配置:2*P40_48G显存_14核CPU_112G内存
  • 预测耗时
    • 总预测时长: 500 s
    • 单个目标行为2000条样本的平均预测时长: 42 ms

6. 代码说明

模型预测部分代码位置如下:

路径 行数 内容
src/inference.py 126 pred_ans1 = model1.predict(model_input, 2048)
src/inference.py 127 pred_ans2 = model2.predict(model_input, 2048)
src/inference.py 128 pred_ans3 = model3.predict(model_input, 2048)

7. 相关文献

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published