Skip to content

wzirui/guided-neural-style

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

guided-neural-style

Introduction

This is a tensorflow implementation of spatially controlled neural style transfer. The techniques used are described or greatly inspired by materials below:

Usage & Examples

It takes a few minutes on a GeForce GTX TITAN X GPU to produce a 512x512 pixel image for 1000 iterations.

Run python stylize.py --help or check Parser.py to see a full list of options.

Simple Style Transfer

python stylize.py \
       --content_img='images/tubingen.png' \
       --style_img='images/starry-night.jpg' \
       --hard_width=512

--hard_width allows to resize content and style images to the specified width. If not set, the original shape will be used.

Simple Texture Synthesis

python stylize.py \
       --style_img='images/flowers.png'


(left: input; right: output)

Guided Style Transfer

--mask_n_colors specifies how many corresponding regions should be transfered. Default value is 1.

a) single(partial) mask

When --mask_n_colors=1, you can give 1 or 2 mask images(content mask or style mask or both) and the program will only transfer the corresponding white region of the mask. If content or style mask is not given, the whole region will be transfered.

python stylize.py \
       --mask_n_colors=1 \
       --content_img='images/house.jpg' \
       --target_mask='images/house_guide.jpg' \
       --style_img='images/castle.jpg' \
       --style_mask='images/castle_guide.jpg' \
       --hard_width=512


(left to right: content image, target mask, style image, style mask)

(castle region -> house region, sky is unchanged)

python stylize.py \
       --mask_n_colors=1  \
       --content_img='images/house.jpg' \
       --target_mask='images/house_guide_2.jpg' \
       --style_img='images/starry-night.jpg' \
       --hard_width=512


(starry night -> sky region)

b) colorful(full) mask

When --mask_n_colors is set to larger than 1, you must give 2 masks using the same number of colors, and style will be transfered between every corresponding regions that have the same color.

python stylize.py \
       --mask_n_colors=2 \
       --content_img='images/house.jpg' \
       --target_mask='images/house_guide.jpg' \
       --style_img='images/castle.jpg' \
       --style_mask='images/castle_guide.jpg' \
       --hard_width=512


(castle->house; sky->sky)

Other results:


(sky->sky; grass->house)


(sky->face; grass->background)

Reproduce the transfered protraits in Neural Doodle:



(Perceptually, impressionist style is easier to transfer and has better result than realistic style.)

Guided Texture Synthesis(Neural Doodle)

python stylize.py \
       --mask_n_colors=1 \
       --style_img='images/grass.jpg' \
       --style_mask='images/grass_guide_2.jpg' \
       --hard_width=512


(only capture the texture of sky region)

Reproduce the coastline image in neural doodle:



(my result is not so good on the color boundaries. Please launch a pull request if you have some idea ^_^)

Comparison: Different Mask Propagation Methods

Different mask manipulation methods control the actual receptive fields of specific regions. Here we reproduce the figure 2 from supplementary material of Gatys' paper.

There are 4 choices for --mask_downsample_type(default is 'simple'): 'simple', 'inside', 'all' and 'mean'. The first three get idea from Gatys' paper while 'mean' comes from Ulyanov's blog. My implementations are not completely the same.


(upper row: all, simple; lower row: mean, inside)

As we can see, with 'all' or 'simple' methods, the styles of sky and house are leaking into the other region(the clouds get style of yellow brick, the roofs become blurred); while with 'inside' method, the boundary is not well stylized. 'Mean' method is almost the same as 'simple'(I think 'mean' is a little bit better actually).

Forthcoming

  • transfering regional styles from multiple style sources
  • discussion about some details and bad results

Requirements

Dependencies

  • tensorflow >= 1.0
  • numpy
  • scipy
  • Pillow (The image manipulation functions in scipy.misc need Pillow)
  • sklearn

Pretrained VGG-19 Model

VGG-19 Model: http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat.

After downloading, put it in the top level of this repository.

Acknowledgements

Citation

@misc{Wang2017,
  author = {Wang, Zirui},
  title = {guided-neural-style},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/wzirui/guided-neural-style}},
}

Releases

No releases published

Packages

No packages published

Languages