- Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters - ASPLOS ’13
- Quasar: Resource-Efficient and QoS-Aware Cluster Management - ASPLOS ’14
- SPEC CPU2006 单线程负载
- memcached 内存型数据库
- parsec 多线程负载
- websearch Latency critical 任务
- perf/lib-perf 任务性能检测
- bash_basic.sh - SPEC CPU 2006 任务间相互干扰
- memcached+spec2006.sh - memcached+spec2006 任务间相互干扰
- ibench.sh autorun_ibench.sh - SPEC CPU 2006 任务在 ibench 七种不同压力干扰下的运行状况
# Train rmse: 0.632234683903
# Test rmse: 0.958863923627
-
gridsearch_ALS_SGD_MF.py - 可遍历地求出最优超参数
载入原始数据¶
In [2]:
# Load data from disk
names = ['workload_id', 'pressure_id', 'rating']
df = pd.read_csv('/Users/dong/Desktop/体系-数据分析/IPS-rating-final.csv',delimiter=",", names=names)
print(df.shape)
num_workloads = df.workload_id.unique().shape[0]
num_pressures = df.pressure_id.unique().shape[0]
print(num_workloads, "kinds of workloads")
print(num_pressures, "kinds of pressures")
(86, 3)
12 kinds of workloads
8 kinds of pressures
在未来的使用中,每次任务提交时,只需在IPS-rating-final.csv文件中,继续补充 此种workload_id 的在 pressure_id 测试值(2-3次),即可得出此种 workload在每一种压力下的 “百分制评分”。 Greedily选择最高评分即可。
Prediction Result...
[[ 53 81 52 74 100 96 99 101]
[ 49 79 49 72 98 94 97 100]
[ 50 79 48 71 99 95 98 100]
[ 51 78 47 70 97 93 97 99]
[ 50 78 49 71 97 94 97 99]
[ 50 78 50 71 96 93 95 98]
[ 51 78 47 70 97 93 97 99]
[ 86 81 58 76 88 87 92 95]
[ 49 80 51 73 100 96 99 101]
[ 50 79 50 72 98 94 97 100]
[ 69 80 70 77 87 85 87 88]
[ 79 80 78 79 82 81 82 83]]