Dataset and source code for our work Dataset and Enhanced Model for Eligibility Criteria-to-SQL Semantic Parsing.
- The implementation based on SQLova.
python3.6
or higher.PyTorch 0.4.0
or higher.CUDA 9.0
- Python libraries:
babel, matplotlib, defusedxml, tqdm
- Example
- Install minicoda
conda install pytorch torchvision -c pytorch
conda install -c conda-forge records
conda install babel
conda install matplotlib
conda install defusedxml
conda install tqdm
- The code has been tested on GTX 1080 Ti running on Ubuntu 16.04.4 LTS.
-
To train the model by running:
python train.py --seed 1 --bS 2 --accumulate_gradients 8 --bert_type_abb uS --fine_tune --lr 0.001 --lr_bert 0.00001 --max_seq_leng 512
on terminal. -
To test on pre-trained model by running:
python test.py --seed 1 --bS 2 --accumulate_gradients 8 --bert_type_abb uS --max_seq_leng 512
on terminal. -
Pre-trained models can be download from here.
Our dataset follows same format as WikiSQL, while includes new types of SQL queries for order-sensitive eligibility criteria, counting-based eligibility criteria, boolean-type eligibility criteria.
If you use Criteria2SQL, please cite the following work:
@InProceedings{yu-EtAl:2020:LREC,
author = {Yu, Xiaojing and Chen, Tianlong and Yu, Zhengjie and Li, Huiyu and Yang, Yang and Jiang, Xiaoqian and Jiang, Anxiao},
title = {Dataset and Enhanced Model for Eligibility Criteria-to-SQL Semantic Parsing},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {5831--5839
}