-
Video Object Detection with an Aligned Spatial-Temporal Memory : Fanyi Xiao, Yong Jae Lee. ECCV(2018).
- Paper: https://arxiv.org/pdf/1712.06317.pdf
- Homepage: http://fanyix.cs.ucdavis.edu/project/stmn/project.html
- Institution: University of California
-
Spatial-Temporal Memory Networks for Video Object Detection :
- Paper: https://arxiv.org/pdf/1712.06317.pdf
- Homepage: http://fanyix.cs.ucdavis.edu/project/stmn/project.html
- Institution: University of California
-
Fully Motion-Aware Network for Video Object Detection : Shiyao Wang, Yucong Zhou, Junjie Yan, Zhidong Deng. ECCV (2018)
-
Object Detection in Video with Spatiotemporal Sampling Networks : Gedas Bertasius, Lorenzo Torresani, ianbo Shi. ECCV (2018).
- Paper: https://arxiv.org/pdf/1803.05549.pdf
- Institution: University of Pennsylvania
- Towards High Performance Video Object Detection : Xizhou Zhu, Jifeng Dai, Lu Yuan, Yichen Wei. CVPR (2018).
- Paper: https://arxiv.org/abs/1711.11577
- Institution: Microsoft Research Asia
- Optimizing Video Object Detection vis a Scale-Time Lattice : Kai Chen, Jiaqi Wang, Shuo Yang, Xingcheng Zhang, Yuanjun Xiong, Chen Chang Loy, Dahua Lin. CVPR (2018).
- Paper: https://arxiv.org/pdf/1804.05472.pdf
- Code: https://github.com/hellock/scale-time-lattice
- Homepage: http://mmlab.ie.cuhk.edu.hk/projects/ST-Lattice/
- Institution: Chinese University of Hong Kong
- Flow-Guided Feature Aggregation for Video Object Detection : Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, Yichen Wei. ICCV (2017).
- Paper: https://arxiv.org/abs/1703.10025
- Code: https://github.com/msracver/Flow-Guided-Feature-Aggregation
- Institution: Microsoft Research Asia
- Detect to Track and Track to Detect : Christoph Feichtenhofer, Axel Pinz, Andrew Zisserman. ICCV (2017).
- Paper: http://www.robots.ox.ac.uk/~vgg/publications/2017/Feichtenhofer17/feichtenhofer17.pdf
- Homepage: http://www.robots.ox.ac.uk/~vgg/research/detect-track/
- Institution: University of Oxford
- Deep Feature Flow for Video Recognition : Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, Yichen Wei. CVPR (2017).
- Paper: https://arxiv.org/abs/1611.07715
- Code: https://github.com/msracver/Deep-Feature-Flow
- Institution: Microsoft Research Asia
-
Impression Network for Video Object Detection : Congrui Hetang∗, Hongwei Qin, Shaohui Liu∗, Junjie Yan. (Arxiv Tech Report, 201712).
- Paper: https://arxiv.org/pdf/1712.05896.pdf
- Institution: SenseTime Research Institute
-
Object Detection in Videos by High Quality Object Linking : Peng Tang∗, Chunyu Wang, Xinggang Wang, Wenyu Liu, Wenjun Zeng, Jingdong Wang. (Arxiv Tech Report, 201806).
- Paper: https://arxiv.org/pdf/1801.09823.pdf
- Institution: Microsoft Research Asia