This is the official code repository for "Rep-RTADet: Reparameterized Real-Time Algae Object Detectors Enhanced through Dynamic Cache-Based Poisson Fusion".
Rep-RTADet
算法在阿里天池 IEEE Cybermatics 第二届国际 "Vision Meets Algae" 挑战赛 中获得冠军
conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .
以 reprtadet_l_possion.py 配置文件为例
data_root 数据根目录
train_ann_file 训练集标注文件路径(json格式)
train_data_prefix 训练集图片路径
val_ann_file 验证集标注文件路径(json格式)
val_data_prefix 验证集图片路径
test_image_info 测试集标注文件路径(json格式)
test_image 测试集图片路径
├── algae
│ ├── images
│ │ ├── train
│ │ ├── val
│ │ ├── test
│ ├── annotations
│ │ ├── instances_train.json
│ │ ├── instances_val.json
│ │ ├── instances_test.json
python tools/train.py configs/reprtadet/reprtadet_m.py
# val
python tools/test.py configs/reprtadet/reprtadet_m.py RepRTADet-m.pth
# test
python tools/test.py configs/reprtadet/reprtadet_m_test.py RepRTADet-m.pth
Model | img size | box AP0.5 val | box AP val | box AP test | TTA box AP test | 预训练模型 | epochs |
---|---|---|---|---|---|---|---|
RepRTADet-m | 1280 | 0.934 | 0.723 | 0.7515 | RTMDet-m | 200 | |
RepRTADet-m2 | 1280 | 0.933 | 0.722 | 0.7460 | 0.7510 | RTMDet-m | 200 |