This is a sample implementaion of 3D object detection application using Intel(r) Distribution of OpenVINO(tm) Toolkit. The program uses objectron
model from Google mediapipe project to detect the objects from the input images.
In this project, I took the objectron
model in TF SavedModel format from PINTO model zoo in the GitHub.
これはIntel(r) Distribution of OpenVINO(tm) Toolkitを使用した3D物体検出アプリケーションの参考実装です。プログラムはGoogle mediapipeプロジェクトのobjectron
モデルを使用しています。
このプロジェクトではPINTOさんのPINTO model zooからTF SavedModelフォーマットのモデルデータを使用させて頂いています。
Linux compatible environment is required to run download.sh
script to get the model
Download download.sh
from https://github.com/PINTO0309/PINTO_model_zoo/tree/master/36_Objectron/01_float32
./download.sh
You'll get following files (and the other model files too).
saved_model_object_detection_3d_chair/
+ variables/
| + variables.data-00000-of-00001
| + variables.index
+ saved_model.pb
Use Model Optimizer (MO)
to convert the TF model into IR model.
Linux
python3 ${INTEL_OPENVINO_DIR}/deployment_tools/model_optimizer/mo.py \
--saved_model_dir saved_model_object_detection_3d_chair \
--scale 255 \
--output_dir objectron_chair \
--data_type FP16
Windows
python "%INTEL_OPENVINO_DIR%\deployment_tools\model_optimizer\mo.py" ^
--saved_model_dir saved_model_object_detection_3d_chair ^
--scale 255 ^
--output_dir objectron_chair ^
--data_type FP16
An IR model ./objectron_chair/saved_model.xml|.bin
will be generated.
(Linux) python3 objectron.py [-m model.xml] [-i input_image] [--heatmap]
(Win10) python objectron.py [-m model.xml] [-i input_image] [--heatmap]
Options
-m
: IR model path (default: ./objectron_chair/saved_model.xml
)
-i
: Input image path. A webCam will be used as the input when you specify cam
(default: chair.jpg
)
--heatmap
: Display heatmap
Command line example:
$ python3 objectron.py -m ./objectron_chair/object_detection_3d_chair.xml -i cam --heatmap
- Ubuntu 18.04 / Windows 10 1909
- OpenVINO 2020.3 LTS