Skip to content

yogesh-iitj/RefRelations

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of the Few-shot Referring Relatiohsip in Videos (CVPR 2023) paper

project page | paper

Requirements

To setup environment

  # create new env fsrr
  $ conda create -n fsrr python=3.8.5

  # activate fsrr
  $ conda activate fsrr

  # install pytorch, torchvision
  $ conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch

  # install other dependencies
  $ pip install -r requirements.txt

Training

Preparing dataset

$ python video_to_frame.py
  • Extract faster_rcnn features:
  $ sh data_preparation/vidor.sh
  # Please follow instructions [here](data_preparation/README.md).
  • Extract I3d features:
  $ sh data_preparation/vidor_i3d.sh

Traning RelationNet and VR_Encoder

  $ python model/relnet.py
  # Follow model/config.py for different model settings

Inference

  $ python inference/FullModel_inf.py
  # Follow inference/config.py for inference settings

Evaluation

  $ sh eval/eval.sh

Cite

If you find this work useful for your research, please consider citing.

@inproceedings{
fewshot_ref_rel,
title={Few-Shot Referring Relationships in Videos},
author={Yogesh Kumar, Anand Mishra},
booktitle={Conference on Computer Vision and Pattern Recognition 2023},
year={2023},
url={https://openreview.net/forum?id=dCbmHXhGtib}
}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published