Skip to content

yogesh-iitj/floco

Repository files navigation

FloCo

Official implementation of the Towards Making Flowchart Images Machine Interpretable paper (ICDAR 2023)

Paper | Project Page

Requirements

To setup environment

# create new env flow
$ conda create -n flow python=3.10.8

# activate flow
$ conda activate flow

# install pytorch, torchvision
$ conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia

# install other dependencies
$ pip install -r requirements.txt

Training

Preparing dataset

  • Download the dataset here and unzip it.
  • The dataset directory should have the following structure:
[FloCo]
├── Train
│   ├── codes
│   ├── flowchart
│   ├── png
│   └── svg
├── Validation
│   ├── codes
│   ├── flowchart
│   ├── png
│   └── svg
└── Test
    ├── codes
    ├── flowchart
    ├── png
    └── svg

Generating sequence embeddings

  • Encode flowchart images into sequential embeddings for each of train, validation and test sets separately
# Set path to the folder containing the png flowchart images
# Set path to text file to save the encodings
$ python generate_encodings.py
  • The dataset directory should now look like:
[FloCo]
├── Train
│   ├── codes
│   ├── flowchart
│   ├── png
│   ├── svg
│   └── encodings.txt
├── Validation
│   ├── codes
│   ├── flowchart
│   ├── png
│   ├── svg
│   └── encodings.txt
└── Test
    ├── codes
    ├── flowchart
    ├── png
    ├── svg
    └── encodings.txt

Pre-train the model architecture

# Set path to augmented python codes and train set flowchart encodings 
# Set path to save model checkpoints and train logs
$ python pre-training.py

Fine-tune the pre-trained model

# Set path to training and validation flowchart encodings and python codes respectively 
# Set path to save model checkpoints and train logs
$ python fine-tuning.py

Inference

  • Generate python codes for unseen flowchart images using best checkpoints of the trained model
# Set path to flowchart encodings and python codes belonging to the test dataset 
# Define path to the best checkpoint saved above
# Set path to save the generated codes
$ python inference.py

Cite us

  • If you find this work useful for your research, please consider citing.
@inproceedings{shukla2023floco,
  author    = "Shukla, Shreya and 
              Gatti, Prajwal and 
              Kumar, Yogesh and
              Yadav, Vikash and
              Mishra, Anand",
  title     = "Towards Making Flowchart Images Machine Interpretable",
  booktitle = "ICDAR",
  year      = "2023",
}

Acknowledgements

This repo uses scripts from https://github.com/salesforce/CodeT5/tree/main/evaluator/CodeBLEU to compute BLEU and CodeBLEU scores.

Code provided by https://huggingface.co/Salesforce/codet5-small helped in implementing FloCo-T5.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published