- learn_sample_t.py is the code I used to fit the sampling time of the worms
- fit_to_behaviour is the code I used to fit worms to the behavioural assay
- code to run simulations of different parameter sets is found in run_worms_sim.py and instructions to use this from the command line are below
usage:
run_worms_sim.py [-h] [--weights_file WEIGHTS_FILE] [--weights WEIGHTS]
[--out_dir OUT_DIR] [--plot PLOT] [--opt OPT]
[--n_worms N_WORMS]
optional arguments:
-h, --help show this help message and exit
--weights_file WEIGHTS_FILE
input parameter file, can be csv or saved numpy array
--weights WEIGHTS can be used to quickly simulate a set of parameters,
either this or --in_file must be specified, if both
specified --in_file will be used
--out_dir OUT_DIR directory to save results in, default is ./working_dir
--plot PLOT 1 to plot 0 to not, default is 1
--opt OPT A to run behaviour assay, C to run calcium plot, B to
run both, default is B
--n_worms N_WORMS number of worms to simulate in each experiment for the
violin plots, default is 100. If --calcium=1 this
argument is ignored as only one worm is required
examples:
python run_worms_sim.py --weights_file test_weights.csv --opt B --n_worms 10