Skip to content

zepingyu0512/sli_rec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive User Modeling with Long and Short-Term Preference for Personalized Recommendation

This code provides an implementation of the SLi-Rec network for sequential recommendation in this paper.
To see more, please visit:
https://github.com/microsoft/recommenders/tree/master/reco_utils/recommender/deeprec/models/sequential .

Data Preparation

sh data_preparing.sh

In data/, it will generate these files:

  • reviews_information
  • meta_information
  • train_data
  • test_data
  • user_vocab.pkl
  • item_vocab.pkl
  • category_vocab.pkl

Model Implementation

The model is implemented in model.py. Training model:

python sli_rec/train.py

After training, run the following code to evaluate the model:

python sli_rec/test.py

The model below had been supported:

Baselines:

  • ASVD
  • DIN
  • LSTM
  • LSTMPP
  • NARM
  • CARNN
  • Time1LSTM
  • Time2LSTM
  • Time3LSTM
  • DIEN

Our models:

  • A2SVD
  • T_SeqRec
  • TC_SeqRec_I
  • TC_SeqRec_G
  • TC_SeqRec
  • SLi_Rec_Fixed
  • SLi_Rec_Adaptive

Dependencies (other versions may also work):

  • python==2.7
  • tensorflow==1.4.1
  • keras==2.1.5
  • numpy==1.15.4

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published