Skip to content

zhangbububu/EDAD

Repository files navigation

EDAD

This repository is the implementation of: An Encode-then-Decompose Approach for Unsupervised Time Series Anomaly Detection. We propose the EDAD framework for unsupervised anomaly detection and evaluate its performance on nine open-source datasets.

Get Started

  1. Install Python 3.10, PyTorch >= 2.0.0, Wandb. Then run the following command.

    pip install -r requirements.txt
  2. Before running EDAD, download the publicly available dataset from the link, unzip it and place it in the /dataset directory.

  3. Use the following example to run the algorithm.

    python main-all.py --lr 0.0005 \
    --input_c 25 \
    --output_c 25 \
    --dataset PSM \
    --win_size 100 \
    --d_model 512 \
    --critic sep \
    --batch_size 256 \
    --l_intra_s 1 \
    --l_intra_r 1 \
    --l_mi 1 
  4. In order to run EDAD on other data sets, you need to prepare the data set and put it in the /dataset directory, and add the read operation of the dataset in the dataloder.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages