Skip to content

Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion

License

Notifications You must be signed in to change notification settings

zhenpeiyang/RelativePose

Repository files navigation

Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion

Pytorch implementation of paper "Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion"

alt tag

Prerequisites:

Folder Organization

please make sure to have following folder structure:

RelativePose/
    data/
        dataList/
        pretrained_model/
    experiments/
    tmp/

Dataset Download

images: suncg,matterport,scannet
data list: suncg,matterport,scannet
pretrained model: suncg,matterport,scannet
Images should be uncompressed under data/ folder. The data list contains the split used in our experiments, and should be placed under data/dataList/ folder. The pretrained model should be placed under data/pretrained_model/ folder.

Usage

training feature network

# suncg 
python mainFeatureLearning.py --exp featSuncg --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=suncg --outputType=rgbdnsf --snumclass=15
# matterport 
python mainFeatureLearning.py --exp featMatterport --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=matterport --outputType=rgbdnsf --snumclass=15
# scannet 
python mainFeatureLearning.py --exp featScannet --g --batch_size=2 --featurelearning=1 --maskMethod=kinect --resume --dataList=scannet --outputType=rgbdnsf --snumclass=21

training completion module

# suncg 
python mainPanoCompletion2view.py --exp compSuncg--g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=suncg --outputType=rgbdnsf --snumclass=15
# matterport 
python mainPanoCompletion2view.py --exp compMatterport --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=matterport --outputType=rgbdnsf --snumclass=15
# scannet 
python mainPanoCompletion2view.py --exp compScannet  --g --batch_size=2 --featurelearning=1 --maskMethod=kinect --resume --dataList=scannet --outputType=rgbdnsf --snumclass=21 --useTanh=0

train relative pose module

python trainRelativePoseModuleRecFD.py --exp fd_param --dataset=suncg --snumclass=15 --split=val --para_init={param for previous iter} --rlevel={recurrent level}

The trained parameters for relative pose module are provided in data/relativePoseModule/

Evaluation

python evaluation.py --dataList={suncg,matterport,scannet} --method={ours,ours_nr,ours_nc,gs,cgs,super4pcs} --exp=eval --num_repeat=10 --para={param file}

Noted that you need place Super4PCS binary under the RelativePose/ in order to run its evaluation.

Author

Zhenpei Yang

About

Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages