Pytorch implementation of paper "Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion"
- pytorch (>0.4)
- open3d
- scipy,sklearn
- torchvision
please make sure to have following folder structure:
RelativePose/
data/
dataList/
pretrained_model/
experiments/
tmp/
images: suncg,matterport,scannet
data list: suncg,matterport,scannet
pretrained model: suncg,matterport,scannet
Images should be uncompressed under data/ folder. The data list contains the split used in our experiments, and should be placed under data/dataList/ folder. The pretrained model should be placed under data/pretrained_model/ folder.
# suncg
python mainFeatureLearning.py --exp featSuncg --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=suncg --outputType=rgbdnsf --snumclass=15
# matterport
python mainFeatureLearning.py --exp featMatterport --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=matterport --outputType=rgbdnsf --snumclass=15
# scannet
python mainFeatureLearning.py --exp featScannet --g --batch_size=2 --featurelearning=1 --maskMethod=kinect --resume --dataList=scannet --outputType=rgbdnsf --snumclass=21
# suncg
python mainPanoCompletion2view.py --exp compSuncg--g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=suncg --outputType=rgbdnsf --snumclass=15
# matterport
python mainPanoCompletion2view.py --exp compMatterport --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=matterport --outputType=rgbdnsf --snumclass=15
# scannet
python mainPanoCompletion2view.py --exp compScannet --g --batch_size=2 --featurelearning=1 --maskMethod=kinect --resume --dataList=scannet --outputType=rgbdnsf --snumclass=21 --useTanh=0
python trainRelativePoseModuleRecFD.py --exp fd_param --dataset=suncg --snumclass=15 --split=val --para_init={param for previous iter} --rlevel={recurrent level}
The trained parameters for relative pose module are provided in data/relativePoseModule/
python evaluation.py --dataList={suncg,matterport,scannet} --method={ours,ours_nr,ours_nc,gs,cgs,super4pcs} --exp=eval --num_repeat=10 --para={param file}
Noted that you need place Super4PCS binary under the RelativePose/ in order to run its evaluation.
Zhenpei Yang