An unofficial PyTorch Implementation of PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[NIPS 2017].
- PyTorch, Python3, TensorboardX, tqdm, fire
-
Start
-
Dataset: ModelNet40, download it from Official Site or Baidu Disk with hi1i.
-
Train
python train_clss.py --data_root your_data_root --log_dir your_log_dir eg. python train_clss.py --data_root /root/modelnet40_normal_resampled --log_dir cls_ssg_1024
-
Evaluate
python evaluate.py evaluate_cls model data_root checkpoint npoints eg. python evaluate.py evaluate_cls pointnet2_cls_ssg /root/modelnet40_normal_resampled \ checkpoints/pointnet2_cls_250.pth 1024 python evaluate.py evaluate_cls pointnet2_cls_msg root/modelnet40_normal_resampled \ checkpoints/pointnet2_cls_250.pth 1024
-
-
Performance(the first row is the results reported in Paper, the following rows are results reported from this repo.)
Model NPoints Aug Accuracy(%) PointNet2(official) 5000 ✓ 91.7 PointNet2_SSG 1024 ✗ 91.8 PointNet2_SSG 4096 ✗ 91.7 PointNet2_SSG 4096 ✓ 90.5 PointNet2_MSG 4096 ✓ 91.0 Model Train_NPoints DP Test_NPoints Accuracy(%) PointNet2_SSG 1024 ✗ 256 67.9 PointNet2_SSG 1024 ✓ 256 90.8 PointNet2_SSG 1024 ✗ 1024 91.8 PointNet2_SSG 1024 ✓ 1204 91.9
-
Start
-
Dataset: ShapeNet part, download it from Official Site or Baidu Disk with 3e5z.
-
Train
python train_part_seg.py --data_root your_data_root --log_dir your_log_dir eg. python train_part_seg.py --data_root /root/shapenetcore_partanno_segmentation_benchmark_v0_normal \ --log_dir seg_ssg --batch_size 64
-
Evaluate
python evaluate.py evaluate_seg data_root checkpoint eg. python evaluate.py evaluate_seg /root/shapenetcore_partanno_segmentation_benchmark_v0_normal \ seg_ssg/checkpoints/pointnet2_cls_250.pth
-
-
Metrics: Average IoU
Model Metrics mean aero bag cap car chair ear phone guitar knife lamp laptop motor mug pistol rocket skate board table PointNet2(official) IoU 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6 PointNet2_SSG IoU 84.1 82.3 75.0 80.1 77.8 90.2 73.7 90.7 84.1 82.9 95.0 69.3 93.3 80.3 55.6 76.3 80.7 PointNet2_SSG Accuracy 93.2 89.9 89.0 85.5 91.8 94.4 93.5 96.1 91.1 89.2 96.9 87.4 96.4 93.7 77.2 95.9 94.8