Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve test coverage for sorting structs #2507

Merged
merged 3 commits into from
May 27, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 58 additions & 10 deletions integration_tests/src/main/python/sort_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@

from asserts import assert_gpu_and_cpu_are_equal_collect
from data_gen import *
from marks import *
from pyspark.sql.types import *
import pyspark.sql.functions as f
from spark_session import is_before_spark_311
Expand All @@ -38,10 +37,7 @@ def test_single_orderby(data_gen, order):
pytest.param(1),
pytest.param(200)
])
@pytest.mark.parametrize('stable_sort', [
pytest.param(True),
pytest.param(False)
])
@pytest.mark.parametrize('stable_sort', ['STABLE', 'OUTOFCORE'])
@pytest.mark.parametrize('data_gen', [
pytest.param(all_basic_struct_gen),
pytest.param(StructGen([['child0', all_basic_struct_gen]]),
Expand All @@ -68,7 +64,7 @@ def test_single_nested_orderby_plain(data_gen, order, shuffle_parts, stable_sort
**allow_negative_scale_of_decimal_conf,
**{
'spark.sql.shuffle.partitions': shuffle_parts,
'spark.rapids.sql.stableSort.enabled': stable_sort
'spark.rapids.sql.stableSort.enabled': stable_sort == 'STABLE'
}
})

Expand Down Expand Up @@ -113,12 +109,31 @@ def test_single_sort_in_part(data_gen, order):
lambda spark : unary_op_df(spark, data_gen).sortWithinPartitions(order),
conf = allow_negative_scale_of_decimal_conf)


@pytest.mark.parametrize('data_gen', [all_basic_struct_gen], ids=idfn)
@pytest.mark.parametrize('order', [
pytest.param(f.col('a').asc()),
pytest.param(f.col('a').asc_nulls_first()),
pytest.param(f.col('a').asc_nulls_last(),
marks=pytest.mark.xfail(reason='opposite null order not supported')),
pytest.param(f.col('a').desc()),
pytest.param(f.col('a').desc_nulls_first(),
marks=pytest.mark.xfail(reason='opposite null order not supported')),
pytest.param(f.col('a').desc_nulls_last()),
], ids=idfn)
@pytest.mark.parametrize('stable_sort', ['STABLE', 'OUTOFCORE'], ids=idfn)
def test_single_nested_sort_in_part(data_gen, order, stable_sort):
sort_conf = {'spark.rapids.sql.stableSort.enabled': stable_sort == 'STABLE'}
assert_gpu_and_cpu_are_equal_collect(
lambda spark : unary_op_df(spark, data_gen).sortWithinPartitions(order),
conf={**allow_negative_scale_of_decimal_conf, **sort_conf})

orderable_gens_sort = [byte_gen, short_gen, int_gen, long_gen,
pytest.param(float_gen, marks=pytest.mark.xfail(condition=is_before_spark_311(),
reason='Spark has -0.0 < 0.0 before Spark 3.1')),
pytest.param(double_gen, marks=pytest.mark.xfail(condition=is_before_spark_311(),
reason='Spark has -0.0 < 0.0 before Spark 3.1')),
boolean_gen, timestamp_gen, date_gen, string_gen, null_gen] + decimal_gens
boolean_gen, timestamp_gen, date_gen, string_gen, null_gen, StructGen([('child0', long_gen)])] + decimal_gens
@pytest.mark.parametrize('data_gen', orderable_gens_sort, ids=idfn)
def test_multi_orderby(data_gen):
assert_gpu_and_cpu_are_equal_collect(
Expand Down Expand Up @@ -146,6 +161,16 @@ def test_orderby_with_processing_and_limit(data_gen):
# avoid ambiguity in the order by statement for floating point by including a as a backup ordering column
lambda spark : unary_op_df(spark, data_gen).orderBy(f.lit(100) - f.col('a'), f.col('a')).limit(100))


# We are not trying all possibilities, just doing a few with numbers so the query works.
@pytest.mark.parametrize('data_gen', [StructGen([('child0', long_gen)])], ids=idfn)
def test_single_nested_orderby_with_processing_and_limit(data_gen):
assert_gpu_and_cpu_are_equal_collect(
# avoid ambiguity in the order by statement for floating point by including a as a backup ordering column
lambda spark : unary_op_df(spark, data_gen)\
.orderBy(f.struct(f.lit(100) - f.col('a.child0')), f.col('a'))\
.limit(100))

# We are not trying all possibilities, just doing a few with numbers so the query works.
@pytest.mark.parametrize('data_gen', [byte_gen, long_gen, float_gen], ids=idfn)
def test_single_orderby_with_skew(data_gen):
Expand All @@ -160,15 +185,38 @@ def test_single_orderby_with_skew(data_gen):
.selectExpr('a'),
conf = allow_negative_scale_of_decimal_conf)


# We are not trying all possibilities, just doing a few with numbers so the query works.
@pytest.mark.parametrize('data_gen', [all_basic_struct_gen], ids=idfn)
@pytest.mark.parametrize('stable_sort', ['STABLE', 'OUTOFCORE'], ids=idfn)
def test_single_nested_orderby_with_skew(data_gen, stable_sort):
sort_conf = {'spark.rapids.sql.stableSort.enabled': stable_sort == 'STABLE'}
# When doing range partitioning the upstream data is sampled to try and get the bounds for cutoffs.
# If the data comes back with skewed partitions then those partitions will be resampled for more data.
# This is to try and trigger it to happen.
assert_gpu_and_cpu_are_equal_collect(
lambda spark : unary_op_df(spark, data_gen) \
.selectExpr('a', 'random(1) > 0.5 as b') \
.repartition(f.col('b')) \
.orderBy(f.col('a')) \
.selectExpr('a'),
conf={**allow_negative_scale_of_decimal_conf, **sort_conf})


# This is primarily to test the out of core sort with multiple batches. For this we set the data size to
# be relatively large (1 MiB across all tasks) and the target size to be small (16 KiB). This means we
# should see around 64 batches of data. So this is the most valid if there are less than 64 tasks
# in the cluster, but it should still work even then.
def test_large_orderby():
@pytest.mark.parametrize('data_gen', [long_gen, StructGen([('child0', long_gen)])], ids=idfn)
@pytest.mark.parametrize('stable_sort', ['STABLE', 'OUTOFCORE'], ids=idfn)
def test_large_orderby(data_gen, stable_sort):
assert_gpu_and_cpu_are_equal_collect(
lambda spark : unary_op_df(spark, long_gen, length=1024*128)\
lambda spark : unary_op_df(spark, data_gen, length=1024*128)\
.orderBy(f.col('a')),
conf = {'spark.rapids.sql.batchSizeBytes': '16384'})
conf={
'spark.rapids.sql.batchSizeBytes': '16384',
'spark.rapids.sql.stableSort.enabled': stable_sort == 'STABLE'
})

# This is similar to test_large_orderby, but here we want to test some types
# that are not being sorted on, but are going along with it
Expand Down