Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PaddlePaddle Hackathon] add Squeezenet #36066

Merged
merged 26 commits into from
Nov 3, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions python/paddle/tests/test_pretrained_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,9 @@ def infer(self, arch):
def test_models(self):
arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d', 'inception_v3', 'densenet121', 'googlenet',
'shufflenet_v2_x0_25', 'shufflenet_v2_swish'
'resnext50_32x4d', 'inception_v3', 'densenet121', 'squeezenet1_0',
'squeezenet1_1', 'googlenet', 'shufflenet_v2_x0_25',
'shufflenet_v2_swish'
]
for arch in arches:
self.infer(arch)
Expand Down
6 changes: 6 additions & 0 deletions python/paddle/tests/test_vision_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,12 @@ def test_densenet201(self):
def test_densenet264(self):
self.models_infer('densenet264')

def test_squeezenet1_0(self):
self.models_infer('squeezenet1_0')

def test_squeezenet1_1(self):
self.models_infer('squeezenet1_1')

def test_alexnet(self):
self.models_infer('alexnet')

Expand Down
3 changes: 3 additions & 0 deletions python/paddle/vision/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,9 @@
from .models import mobilenet_v1 # noqa: F401
from .models import MobileNetV2 # noqa: F401
from .models import mobilenet_v2 # noqa: F401
from .models import SqueezeNet # noqa: F401
from .models import squeezenet1_0 # noqa: F401
from .models import squeezenet1_1 # noqa: F401
from .models import VGG # noqa: F401
from .models import vgg11 # noqa: F401
from .models import vgg13 # noqa: F401
Expand Down
6 changes: 6 additions & 0 deletions python/paddle/vision/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,9 @@
from .resnext import resnext152_64x4d # noqa: F401
from .inceptionv3 import InceptionV3 # noqa: F401
from .inceptionv3 import inception_v3 # noqa: F401
from .squeezenet import SqueezeNet # noqa: F401
from .squeezenet import squeezenet1_0 # noqa: F401
from .squeezenet import squeezenet1_1 # noqa: F401
from .googlenet import GoogLeNet # noqa: F401
from .googlenet import googlenet # noqa: F401
from .shufflenetv2 import ShuffleNetV2 # noqa: F401
Expand Down Expand Up @@ -90,6 +93,9 @@
'resnext152_64x4d',
'InceptionV3',
'inception_v3',
'SqueezeNet',
'squeezenet1_0',
'squeezenet1_1',
'GoogLeNet',
'googlenet',
'ShuffleNetV2',
Expand Down
240 changes: 240 additions & 0 deletions python/paddle/vision/models/squeezenet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,240 @@
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import Conv2D, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D
from paddle.fluid.param_attr import ParamAttr
from paddle.utils.download import get_weights_path_from_url

__all__ = []

model_urls = {
'squeezenet1_0':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams',
'30b95af60a2178f03cf9b66cd77e1db1'),
'squeezenet1_1':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams',
'a11250d3a1f91d7131fd095ebbf09eee'),
}


class MakeFireConv(nn.Layer):
def __init__(self, input_channels, output_channels, filter_size, padding=0):
super(MakeFireConv, self).__init__()
self._conv = Conv2D(
input_channels,
output_channels,
filter_size,
padding=padding,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())

def forward(self, x):
x = self._conv(x)
x = F.relu(x)
return x


class MakeFire(nn.Layer):
def __init__(self, input_channels, squeeze_channels, expand1x1_channels,
expand3x3_channels):
super(MakeFire, self).__init__()
self._conv = MakeFireConv(input_channels, squeeze_channels, 1)
self._conv_path1 = MakeFireConv(squeeze_channels, expand1x1_channels, 1)
self._conv_path2 = MakeFireConv(
squeeze_channels, expand3x3_channels, 3, padding=1)

def forward(self, inputs):
x = self._conv(inputs)
x1 = self._conv_path1(x)
x2 = self._conv_path2(x)
return paddle.concat([x1, x2], axis=1)


class SqueezeNet(nn.Layer):
"""SqueezeNet model from
`"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/pdf/1602.07360.pdf>`_

Args:
version (str): version of squeezenet, which can be "1.0" or "1.1".
num_classes (int): output dim of last fc layer. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.

Examples:
.. code-block:: python
import paddle
from paddle.vision.models import SqueezeNet

# build v1.0 model
model = SqueezeNet(version='1.0')

# build v1.1 model
# model = SqueezeNet(version='1.1')

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)

"""

def __init__(self, version, num_classes=1000, with_pool=True):
super(SqueezeNet, self).__init__()
self.version = version
self.num_classes = num_classes
self.with_pool = with_pool

supported_versions = ['1.0', '1.1']
assert version in supported_versions, \
"supported versions are {} but input version is {}".format(
supported_versions, version)

if self.version == "1.0":
self._conv = Conv2D(
3,
96,
7,
stride=2,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv1 = MakeFire(96, 16, 64, 64)
self._conv2 = MakeFire(128, 16, 64, 64)
self._conv3 = MakeFire(128, 32, 128, 128)
self._conv4 = MakeFire(256, 32, 128, 128)
self._conv5 = MakeFire(256, 48, 192, 192)
self._conv6 = MakeFire(384, 48, 192, 192)
self._conv7 = MakeFire(384, 64, 256, 256)
self._conv8 = MakeFire(512, 64, 256, 256)
else:
self._conv = Conv2D(
3,
64,
3,
stride=2,
padding=1,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv1 = MakeFire(64, 16, 64, 64)
self._conv2 = MakeFire(128, 16, 64, 64)
self._conv3 = MakeFire(128, 32, 128, 128)
self._conv4 = MakeFire(256, 32, 128, 128)
self._conv5 = MakeFire(256, 48, 192, 192)
self._conv6 = MakeFire(384, 48, 192, 192)
self._conv7 = MakeFire(384, 64, 256, 256)
self._conv8 = MakeFire(512, 64, 256, 256)

self._drop = Dropout(p=0.5, mode="downscale_in_infer")
self._conv9 = Conv2D(
512, num_classes, 1, weight_attr=ParamAttr(), bias_attr=ParamAttr())
self._avg_pool = AdaptiveAvgPool2D(1)

def forward(self, inputs):
x = self._conv(inputs)
x = F.relu(x)
x = self._pool(x)
if self.version == "1.0":
x = self._conv1(x)
x = self._conv2(x)
x = self._conv3(x)
x = self._pool(x)
x = self._conv4(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._pool(x)
x = self._conv8(x)
else:
x = self._conv1(x)
x = self._conv2(x)
x = self._pool(x)
x = self._conv3(x)
x = self._conv4(x)
x = self._pool(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._conv8(x)
if self.num_classes > 0:
x = self._drop(x)
x = self._conv9(x)
if self.with_pool:
x = F.relu(x)
x = self._avg_pool(x)
x = paddle.squeeze(x, axis=[2, 3])

return x


def _squeezenet(arch, version, pretrained, **kwargs):
model = SqueezeNet(version, **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.set_dict(param)

return model


def squeezenet1_0(pretrained=False, **kwargs):
"""SqueezeNet v1.0 model

Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

Examples:
.. code-block:: python
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

示例代码的部分,可以参考 这个PR,给一个输入和输出;#36064

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的


from paddle.vision.models import squeezenet1_0

# build model
model = squeezenet1_0()

# build model and load imagenet pretrained weight
# model = squeezenet1_0(pretrained=True)
"""
return _squeezenet('squeezenet1_0', '1.0', pretrained, **kwargs)


def squeezenet1_1(pretrained=False, **kwargs):
"""SqueezeNet v1.1 model

Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

Examples:
.. code-block:: python

from paddle.vision.models import squeezenet1_1

# build model
model = squeezenet1_1()

# build model and load imagenet pretrained weight
# model = squeezenet1_1(pretrained=True)
"""
return _squeezenet('squeezenet1_1', '1.1', pretrained, **kwargs)