-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add_depthwise_conv2d_transpose #53680
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
from get_test_cover_info import ( | ||
XPUOpTestWrapper, | ||
create_test_class, | ||
get_xpu_op_support_types, | ||
) | ||
from op_test_xpu import XPUOpTest | ||
|
||
import paddle | ||
|
||
paddle.enable_static() | ||
|
||
|
||
def depthwiseconv2dtranspose_forward_naive(input_, filter_, attrs): | ||
padding_algorithm = attrs['padding_algorithm'] | ||
if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]: | ||
raise ValueError( | ||
"Unknown Attr(padding_algorithm): '%s'. " | ||
"It can only be 'SAME' or 'VALID'." % str(padding_algorithm) | ||
) | ||
|
||
if attrs['data_format'] == 'NHWC': | ||
input_ = np.transpose(input_, [0, 3, 1, 2]) | ||
in_n, in_c, in_h, in_w = input_.shape | ||
f_c, f_out_c, f_h, f_w = filter_.shape | ||
groups = attrs['groups'] | ||
assert in_c == f_c | ||
out_c = f_out_c * groups | ||
sub_in_c = in_c // groups | ||
|
||
stride, pad, dilations = ( | ||
attrs['strides'], | ||
attrs['paddings'], | ||
attrs['dilations'], | ||
) | ||
|
||
# update pad and dilation | ||
def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride): | ||
padding = [] | ||
for input_size, filter_size, stride_size in zip( | ||
input_shape, kernel_size, kernel_stride | ||
): | ||
out_size = int((input_size + stride_size - 1) / stride_size) | ||
pad_sum = np.max( | ||
((out_size - 1) * stride_size + filter_size - input_size, 0) | ||
) | ||
pad_0 = int(pad_sum / 2) | ||
pad_1 = int(pad_sum - pad_0) | ||
padding.append(pad_0) | ||
padding.append(pad_1) | ||
return padding | ||
|
||
ksize = filter_.shape[2:4] | ||
if padding_algorithm == "VALID": | ||
pad = [0, 0, 0, 0] | ||
elif padding_algorithm == "SAME": | ||
dilations = [1, 1] | ||
input_data_shape = input_.shape[2:4] | ||
pad = _get_padding_with_SAME(input_data_shape, ksize, stride) | ||
|
||
pad_h_0, pad_h_1 = pad[0], pad[0] | ||
pad_w_0, pad_w_1 = pad[1], pad[1] | ||
if len(pad) == 4: | ||
pad_h_0, pad_h_1 = pad[0], pad[1] | ||
pad_w_0, pad_w_1 = pad[2], pad[3] | ||
|
||
d_bolck_h = dilations[0] * (f_h - 1) + 1 | ||
d_bolck_w = dilations[1] * (f_w - 1) + 1 | ||
out_h = (in_h - 1) * stride[0] + d_bolck_h | ||
out_w = (in_w - 1) * stride[1] + d_bolck_w | ||
if 'output_size' in attrs: | ||
output_size = attrs['output_size'] | ||
out_h = output_size[0] + pad_h_0 + pad_h_1 | ||
out_w = output_size[1] + pad_w_0 + pad_w_1 | ||
out_pad_h = 0 | ||
out_pad_w = 0 | ||
if 'output_padding' in attrs: | ||
out_pad_h = attrs['output_padding'][0] | ||
out_pad_w = attrs['output_padding'][1] | ||
out = np.zeros( | ||
(in_n, out_c, out_h + out_pad_h, out_w + out_pad_w), dtype=input_.dtype | ||
) | ||
|
||
for n in range(in_n): | ||
for i in range(in_h): | ||
for j in range(in_w): | ||
for g in range(groups): | ||
input_masked = input_[ | ||
n, g * sub_in_c : (g + 1) * sub_in_c, i, j | ||
] # (c) | ||
input_masked = np.reshape(input_masked, (sub_in_c, 1, 1)) | ||
input_masked = np.tile(input_masked, (1, f_h, f_w)) | ||
|
||
for k in range(f_out_c): | ||
tmp_out = np.sum( | ||
input_masked | ||
* filter_[ | ||
g * sub_in_c : (g + 1) * sub_in_c, k, :, : | ||
], | ||
axis=0, | ||
) | ||
i1, i2 = i * stride[0], i * stride[0] + d_bolck_h | ||
j1, j2 = j * stride[1], j * stride[1] + d_bolck_w | ||
out[ | ||
n, | ||
g * f_out_c + k, | ||
i1 : i2 : dilations[0], | ||
j1 : j2 : dilations[1], | ||
] += tmp_out | ||
|
||
out = out[ | ||
:, | ||
:, | ||
pad_h_0 : out_h - pad_h_1 + out_pad_h, | ||
pad_w_0 : out_w - pad_w_1 + out_pad_w, | ||
] | ||
if attrs['data_format'] == 'NHWC': | ||
out = np.transpose(out, [0, 2, 3, 1]) | ||
return out | ||
|
||
|
||
class XPUTestDepthwiseConv2DTransposeOp(XPUOpTestWrapper): | ||
def __init__(self): | ||
self.op_name = 'depthwise_conv2d_transpose' | ||
self.use_dynamic_create_class = False | ||
|
||
class TestDepthwiseConv2DTransposeOp(XPUOpTest): | ||
def setUp(self): | ||
# init as conv transpose | ||
self.need_check_grad = True | ||
self.is_test = False | ||
self.use_cudnn = False | ||
self.use_mkldnn = False | ||
self.output_size = None | ||
self.output_padding = [] | ||
self.data_format = "NCHW" | ||
self.pad = [0, 0] | ||
self.padding_algorithm = "EXPLICIT" | ||
self.init_op_type() | ||
self.init_test_case() | ||
self.__class__.op_type = "depthwise_conv2d_transpose" | ||
|
||
input_ = np.random.random(self.input_size).astype(self.dtype) | ||
filter_ = np.random.random(self.filter_size).astype(self.dtype) | ||
|
||
self.inputs = {'Input': input_, 'Filter': filter_} | ||
self.attrs = { | ||
'strides': self.stride, | ||
'paddings': self.pad, | ||
'padding_algorithm': self.padding_algorithm, | ||
'groups': self.groups, | ||
'dilations': self.dilations, | ||
'use_cudnn': self.use_cudnn, | ||
'is_test': self.is_test, | ||
'use_mkldnn': self.use_mkldnn, | ||
'data_format': self.data_format, | ||
} | ||
if self.output_size is not None: | ||
self.attrs['output_size'] = self.output_size | ||
|
||
if len(self.output_padding) > 0: | ||
self.attrs['output_padding'] = self.output_padding | ||
|
||
output = depthwiseconv2dtranspose_forward_naive( | ||
input_, filter_, self.attrs | ||
).astype(self.dtype) | ||
|
||
self.outputs = {'Output': output} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
def test_check_grad_no_input(self): | ||
if self.need_check_grad: | ||
self.check_grad_with_place( | ||
self.place, ['Filter'], 'Output', no_grad_set={'Input'} | ||
) | ||
|
||
def test_check_grad_no_filter(self): | ||
if self.need_check_grad: | ||
self.check_grad_with_place( | ||
self.place, ['Input'], 'Output', no_grad_set={'Filter'} | ||
) | ||
|
||
def test_check_grad(self): | ||
if self.need_check_grad: | ||
self.check_grad_with_place( | ||
self.place, {'Input', 'Filter'}, 'Output' | ||
) | ||
|
||
def init_test_case(self): | ||
self.pad = [0, 0] | ||
self.stride = [1, 1] | ||
self.dilations = [1, 1] | ||
self.groups = 1 | ||
self.input_size = [2, 3, 5, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 3, 3] | ||
|
||
def init_op_type(self): | ||
self.dtype = self.in_type | ||
self.place = paddle.XPUPlace(0) | ||
self.op_type = "depthwise_conv2d_transpose" | ||
|
||
class TestWithSymmetricPad(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.pad = [1, 1] | ||
self.stride = [1, 1] | ||
self.dilations = [1, 1] | ||
self.groups = 1 | ||
self.input_size = [2, 3, 5, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 3, 3] | ||
|
||
class TestWithAsymmetricPad(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.pad = [1, 0, 1, 2] | ||
self.stride = [1, 1] | ||
self.dilations = [1, 1] | ||
self.groups = 1 | ||
self.input_size = [2, 3, 5, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 3, 3] | ||
|
||
class TestWithSAMEPad(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.stride = [2, 1] | ||
self.dilations = [1, 2] | ||
self.groups = 1 | ||
self.input_size = [2, 3, 6, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 4, 3] | ||
self.padding_algorithm = 'SAME' | ||
|
||
class TestWithVALIDPad(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.stride = [1, 1] | ||
self.dilations = [1, 1] | ||
self.groups = 1 | ||
self.input_size = [2, 3, 5, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 3, 3] | ||
self.padding_algorithm = 'VALID' | ||
|
||
class TestWithGroups(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.pad = [1, 1] | ||
self.stride = [1, 1] | ||
self.dilations = [1, 1] | ||
self.groups = 2 | ||
self.input_size = [2, 4, 5, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 3, 3, 3] | ||
|
||
class TestWithStride(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.pad = [1, 1] | ||
self.stride = [2, 2] | ||
self.dilations = [1, 1] | ||
self.groups = 1 | ||
self.input_size = [2, 3, 5, 5] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 3, 3] | ||
|
||
class TestWithEvenUpsample(TestDepthwiseConv2DTransposeOp): | ||
def init_test_case(self): | ||
self.pad = [2, 2] | ||
self.stride = [2, 2] | ||
self.groups = 1 | ||
self.dilations = [1, 1] | ||
self.output_size = [14, 14] | ||
self.input_size = [2, 3, 7, 7] # NCHW | ||
f_c = self.input_size[1] | ||
self.filter_size = [f_c, 6, 5, 5] | ||
|
||
|
||
support_types = get_xpu_op_support_types('depthwise_conv2d_transpose') | ||
for stype in support_types: | ||
create_test_class(globals(), XPUTestDepthwiseConv2DTransposeOp, stype) | ||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
方法是test_check_grad,为什么方法里面有一个变量来控制是否check_grad?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
我看有些test脚本里面考虑到了不测试grad情况。(个人觉得可能是因为考虑到了训练版算子和推理版。)因此就也加了变量控制一下,方便后期代码复用。考虑到目前是训练版本,所以那个控制变量设置的为true。