Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[xdoctest] reformat example code with google style in No.48&49 #55868

Merged
merged 3 commits into from
Aug 2, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 60 additions & 61 deletions python/paddle/distribution/geometric.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,22 +49,22 @@ class Geometric(distribution.Distribution):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom = Geometric(0.5)
>>> geom = Geometric(0.5)

geom.mean
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 2.)
>>> print(geom.mean)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
2.)

geom.variance
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 2.)
>>> print(geom.variance)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
2.)

geom.stddev
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 1.41421354)
>>> print(geom.stddev)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
1.41421354)
"""

def __init__(self, probs):
Expand Down Expand Up @@ -140,13 +140,13 @@ def pmf(self, k):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom = Geometric(0.5)
geom.pmf(2)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.25000000)
>>> geom = Geometric(0.5)
>>> print(geom.pmf(2))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.25000000)
"""
if isinstance(k, (numbers.Integral, framework.Variable)):
return paddle.pow((1.0 - self.probs), k - 1.0) * self.probs
Expand All @@ -171,13 +171,13 @@ def log_pmf(self, k):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom = Geometric(0.5)
geom.log_pmf(2)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# -1.38629436)
>>> geom = Geometric(0.5)
>>> print(geom.log_pmf(2))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
-1.38629436)
"""
if isinstance(k, (numbers.Integral, framework.Variable)):
return paddle.log(self.pmf(k))
Expand All @@ -199,16 +199,15 @@ def sample(self, shape=()):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom = Geometric(0.5)
geom.sample((2,2))
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[4.28128004],
# [0.53546447]],
# [[0.88012987],
# [0.54070371]]])
>>> paddle.seed(2023)
>>> geom = Geometric(0.5)
>>> print(geom.sample((2,2)))
Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
[[0.20783406, 0.94300812],
[1.94558561, 0.14360668]])
"""
with paddle.no_grad():
return self.rsample(shape)
Expand All @@ -226,15 +225,15 @@ def rsample(self, shape=()):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.rsample((2,2))
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[2.90974379],
# [1.28049409]],
# [[4.60141420],
# [2.98836184]]])
>>> import paddle
>>> from paddle.distribution import Geometric

>>> paddle.seed(2023)
>>> geom = Geometric(0.5)
>>> print(geom.rsample((2,2)))
Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
[[0.20783406, 0.94300812],
[1.94558561, 0.14360668]])

"""
shape = distribution.Distribution._extend_shape(
Expand All @@ -261,13 +260,13 @@ def entropy(self):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom = Geometric(0.5)
geom.entropy()
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 1.38629436)
>>> geom = Geometric(0.5)
>>> print(geom.entropy())
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
1.38629436)
"""
x = (1.0 - self.probs) * paddle.log(1.0 - self.probs)
y = self.probs * paddle.log(self.probs)
Expand All @@ -291,13 +290,13 @@ def cdf(self, k):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom = Geometric(0.5)
geom.cdf(4)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.93750000)
>>> geom = Geometric(0.5)
>>> print(geom.cdf(4))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.93750000)
"""
if isinstance(k, (numbers.Integral, framework.Variable)):
return 1.0 - paddle.pow((1.0 - self.probs), k)
Expand All @@ -323,14 +322,14 @@ def kl_divergence(self, other):

.. code-block:: python

import paddle
from paddle.distribution import Geometric
>>> import paddle
>>> from paddle.distribution import Geometric

geom_p = Geometric(0.5)
geom_q = Geometric(0.1)
geom_p.kl_divergence(geom_q)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.51082563)
>>> geom_p = Geometric(0.5)
>>> geom_q = Geometric(0.1)
>>> print(geom_p.kl_divergence(geom_q))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.51082563)
"""
if isinstance(other, Geometric):
p, q = self.probs, other.probs
Expand Down