Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[xdoctest][task 355] reformat example code with google style in pir.cc #58177

Merged
merged 4 commits into from
Nov 2, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
146 changes: 97 additions & 49 deletions paddle/fluid/pybind/pir.cc
Original file line number Diff line number Diff line change
Expand Up @@ -143,20 +143,41 @@ void BindProgram(py::module *m) {
Examples:
.. code-block:: python

import paddle
import paddle.static as static

paddle.enable_static()
>>> import paddle
>>> import paddle.static as static

>>> paddle.enable_static()

>>> main_program = static.Program()
>>> startup_program = static.Program()
>>> with static.program_guard(main_program=main_program, startup_program=startup_program):
... x = static.data(name="x", shape=[-1, 784], dtype='float32')
... y = static.data(name="y", shape=[-1, 1], dtype='int32')
... z = static.nn.fc(name="fc", x=x, size=10, activation="relu")

>>> print("main program is: {}".format(main_program))
main program is: { // block 0
var x : LOD_TENSOR.shape(-1, 784).dtype(float32).stop_gradient(True)
var y : LOD_TENSOR.shape(-1, 1).dtype(int32).stop_gradient(True)
persist trainable param fc.w_0 : LOD_TENSOR.shape(784, 10).dtype(float32).stop_gradient(False)
var fc.tmp_0 : LOD_TENSOR.shape(-1, 10).dtype(float32).stop_gradient(False)
persist trainable param fc.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
var fc.tmp_1 : LOD_TENSOR.shape(-1, 10).dtype(float32).stop_gradient(False)
var fc.tmp_2 : LOD_TENSOR.shape(-1, 10).dtype(float32).stop_gradient(False)

{Out=['fc.tmp_0']} = mul(inputs={X=['x'], Y=['fc.w_0']}, force_fp32_output = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], scale_out = 1.0, scale_x = 1.0, scale_y = [1.0], use_mkldnn = False, with_quant_attr = False, x_num_col_dims = 1, y_num_col_dims = 1)
{Out=['fc.tmp_1']} = elementwise_add(inputs={X=['fc.tmp_0'], Y=['fc.b_0']}, Scale_out = 1.0, Scale_x = 1.0, Scale_y = 1.0, axis = 1, mkldnn_data_type = float32, op_device = , op_namescope = /, op_role = 0, op_role_var = [], use_mkldnn = False, use_quantizer = False, with_quant_attr = False, x_data_format = , y_data_format = )
{Out=['fc.tmp_2']} = relu(inputs={X=['fc.tmp_1']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], use_cudnn = False, use_mkldnn = False, with_quant_attr = False)
}

main_program = static.Program()
startup_program = static.Program()
with static.program_guard(main_program=main_program, startup_program=startup_program):
x = static.data(name="x", shape=[-1, 784], dtype='float32')
y = static.data(name="y", shape=[-1, 1], dtype='int32')
z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
>>> print("start up program is: {}".format(startup_program))
start up program is: { // block 0
persist trainable param fc.w_0 : LOD_TENSOR.shape(784, 10).dtype(float32).stop_gradient(False)
persist trainable param fc.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)

print("main program is: {}".format(main_program))
print("start up program is: {}".format(startup_program))
{Out=['fc.w_0']} = uniform_random(inputs={ShapeTensor=[], ShapeTensorList=[]}, diag_num = 0, diag_step = 0, diag_val = 1.0, dtype = 5, max = 0.08692913502454758, min = -0.08692913502454758, op_device = , op_namescope = /, op_role = 0, op_role_var = [], seed = 0, shape = [784, 10], with_quant_attr = False)
{Out=['fc.b_0']} = fill_constant(inputs={}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [10], str_value = 0.0, use_mkldnn = False, value = 0.0, with_quant_attr = False)
}
)DOC");
program
.def("__init__",
Expand Down Expand Up @@ -1206,24 +1227,37 @@ void BindUtils(pybind11::module *m) {
Examples:
.. code-block:: python

import paddle
from paddle import pir
paddle.enable_static()

x = paddle.randn([4, 4])
main_program, start_program = (
paddle.static.Program(),
paddle.static.Program(),
)
with paddle.static.program_guard(main_program, start_program):
x_s = paddle.static.data('x', [4, 4], x.dtype)
x_s.stop_gradient = False
y_s = paddle.matmul(x_s, x_s)
z_s = paddle.add(y_s, y_s)
k_s = paddle.tanh(z_s)
newir_program = pir.translate_to_new_ir(main_program.desc)

print(newir_program)
>>> import os
>>> # Paddle will remove this flag in the next version
>>> pir_flag = 'FLAGS_enable_new_ir_in_executor'
>>> os.environ[pir_flag] = 'True'

>>> import paddle
>>> from paddle import pir
>>> paddle.enable_static()

>>> x = paddle.randn([4, 4])
>>> main_program, start_program = (
... paddle.static.Program(),
... paddle.static.Program(),
...)

>>> with paddle.static.program_guard(main_program, start_program):
... x_s = paddle.static.data('x', [4, 4], x.dtype)
... x_s.stop_gradient = False
... y_s = paddle.matmul(x_s, x_s)
... z_s = paddle.add(y_s, y_s)
... k_s = paddle.tanh(z_s)
>>> newir_program = pir.translate_to_new_ir(main_program.desc)

>>> print(newir_program)
{
(%0) = "pd_op.data" () {dtype:(pd_op.DataType)float32,is_persisable:[false],name:"x",place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[4,4],stop_gradient:[false]} : () -> pd_op.tensor<4x4xf32>
(%1) = "pd_op.matmul" (%0, %0) {is_persisable:[false],stop_gradient:[false],transpose_x:false,transpose_y:false} : (pd_op.tensor<4x4xf32>, pd_op.tensor<4x4xf32>) -> pd_op.tensor<4x4xf32>
(%2) = "pd_op.add" (%1, %1) {is_persisable:[false],stop_gradient:[false]} : (pd_op.tensor<4x4xf32>, pd_op.tensor<4x4xf32>) -> pd_op.tensor<4x4xf32>
(%3) = "pd_op.tanh" (%2) {is_persisable:[false],stop_gradient:[false]} : (pd_op.tensor<4x4xf32>) -> pd_op.tensor<4x4xf32>
}


)DOC");
m->def(
Expand Down Expand Up @@ -1268,25 +1302,39 @@ void BindUtils(pybind11::module *m) {
Examples:
.. code-block:: python

import paddle
from paddle import pir
paddle.enable_static()

x = paddle.randn([4, 4])
main_program, start_program = (
paddle.static.Program(),
paddle.static.Program(),
)
with paddle.static.program_guard(main_program, start_program):
x_s = paddle.static.data('x', [4, 4], x.dtype)
x_s.stop_gradient = False
y_s = paddle.matmul(x_s, x_s)
z_s = paddle.add(y_s, y_s)
k_s = paddle.tanh(z_s)
newir_program, mappings = pir.translate_to_new_ir_with_param_map(main_program.desc)

print(newir_program)
print(mappings)
>>> import os
>>> # Paddle will remove this flag in the next version
>>> pir_flag = 'FLAGS_enable_new_ir_in_executor'
>>> os.environ[pir_flag] = 'True'

>>> import paddle
>>> from paddle import pir
>>> paddle.enable_static()

>>> x = paddle.randn([4, 4])
>>> main_program, start_program = (
... paddle.static.Program(),
... paddle.static.Program(),
... )

>>> with paddle.static.program_guard(main_program, start_program):
... x_s = paddle.static.data('x', [4, 4], x.dtype)
... x_s.stop_gradient = False
... y_s = paddle.matmul(x_s, x_s)
... z_s = paddle.add(y_s, y_s)
... k_s = paddle.tanh(z_s)
>>> newir_program, mappings = pir.translate_to_new_ir_with_param_map(main_program.desc)

>>> print(newir_program)
{
(%0) = "pd_op.data" () {dtype:(pd_op.DataType)float32,is_persisable:[false],name:"x",place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[4,4],stop_gradient:[false]} : () -> pd_op.tensor<4x4xf32>
(%1) = "pd_op.matmul" (%0, %0) {is_persisable:[false],stop_gradient:[false],transpose_x:false,transpose_y:false} : (pd_op.tensor<4x4xf32>, pd_op.tensor<4x4xf32>) -> pd_op.tensor<4x4xf32>
(%2) = "pd_op.add" (%1, %1) {is_persisable:[false],stop_gradient:[false]} : (pd_op.tensor<4x4xf32>, pd_op.tensor<4x4xf32>) -> pd_op.tensor<4x4xf32>
(%3) = "pd_op.tanh" (%2) {is_persisable:[false],stop_gradient:[false]} : (pd_op.tensor<4x4xf32>) -> pd_op.tensor<4x4xf32>
}

>>> print(mappings)
{'matmul_v2_0.tmp_0': [Value(define_op_name=pd_op.matmul, index=0, dtype=pd_op.tensor<4x4xf32>)], 'x': [Value(define_op_name=pd_op.data, index=0, dtype=pd_op.tensor<4x4xf32>)], 'tanh_0.tmp_0': [Value(define_op_name=pd_op.tanh, index=0, dtype=pd_op.tensor<4x4xf32>)], 'elementwise_add_0': [Value(define_op_name=pd_op.add, index=0, dtype=pd_op.tensor<4x4xf32>)]}
)DOC");
}

Expand Down