Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sequence Parallel Support Overlap #62284

Merged
merged 9 commits into from
Mar 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 175 additions & 11 deletions python/paddle/distributed/fleet/utils/sequence_parallel_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,6 +227,158 @@ def is_fused_matmul_bias_supported():
return False


def is_fused_linear_param_grad_add_supported():
if paddle.is_compiled_with_cuda() and not paddle.is_compiled_with_rocm():
return hasattr(paddle._C_ops, 'fused_linear_param_grad_add')
else:
return False


class SPInnerOverlapLinear(paddle.autograd.PyLayer):
@staticmethod
def forward(
ctx,
x,
weight,
bias,
fuse_matmul_bias,
mp_fused_linear_param_grad_add,
model_parallel_group,
):
ctx.mp_fused_linear_param_grad_add = mp_fused_linear_param_grad_add
ctx.model_parallel_group = model_parallel_group

world_size = model_parallel_group.nranks
input_parallel = all_gather(x)

ctx.save_for_backward(x, weight, bias, input_parallel)
if not fuse_matmul_bias:
output = paddle._C_ops.linear(input_parallel, weight, bias)
else:
output = paddle._legacy_C_ops.fused_gemm_epilogue(
input_parallel, weight, bias
)
return output

@staticmethod
def backward(ctx, dy):
x, weight, bias, input_parallel = ctx.saved_tensor()
parallelism = ctx.model_parallel_group.nranks

if dy.dtype == weight.dtype:
dinput_parallel = paddle.matmul(dy, weight, transpose_y=True)
else:
dinput_parallel = paddle.matmul(
dy, paddle.cast(weight, dtype=dy.dtype), transpose_y=True
)

assert (
dinput_parallel.shape[0] % parallelism == 0
), "Input sequence length {} can't be divided exactly by sequence parallelism {}".format(
dinput_parallel.shape[0], parallelism
)

dx_shape = dinput_parallel.shape
dx_shape[0] = dx_shape[0] // parallelism
dx = paddle.empty(shape=dx_shape, dtype=dinput_parallel.dtype)
hcg = fleet.get_hybrid_communicate_group()
group = hcg.get_model_parallel_group()
task = dist.stream.reduce_scatter(
dx,
dinput_parallel,
op=dist.ReduceOp.SUM,
group=group,
sync_op=False,
)

if ctx.mp_fused_linear_param_grad_add:
if not is_fused_linear_param_grad_add_supported():
raise NotImplementedError(
"You set mp_fused_linear_param_grad_add=True, "
"however, the paddle you are using not support this operation. "
"Please unset fused_linear_param_grad_add or use paddle compiled "
"with cuda 11.6 or higher."
)
if bias is None:
if hasattr(weight, "main_grad"):
(
weight.main_grad,
_,
) = paddle._C_ops.fused_linear_param_grad_add(
input_parallel, dy, weight.main_grad, None, True, False
)
task.wait()
return dx, None
else:
if weight.grad is not None:
(
weight.grad,
_,
) = paddle._C_ops.fused_linear_param_grad_add(
input_parallel, dy, weight.grad, None, False, False
)
task.wait()
return dx, None
else:
(
dw,
_,
) = paddle._C_ops.fused_linear_param_grad_add(
input_parallel, dy, None, None, False, False
)
task.wait()
return dx, dw

if hasattr(weight, "main_grad") and hasattr(bias, "main_grad"):
(
weight.main_grad,
bias.main_grad,
) = paddle._C_ops.fused_linear_param_grad_add(
input_parallel,
dy,
weight.main_grad,
bias.main_grad,
True,
True,
)
task.wait()
return dx, None, None
else:
if weight.grad is not None:
assert bias.grad is not None
(
weight.grad,
bias.grad,
) = paddle._C_ops.fused_linear_param_grad_add(
input_parallel, dy, weight.grad, bias.grad, False, True
)
task.wait()
return dx, None, None
else:
(
dw,
dbias,
) = paddle._C_ops.fused_linear_param_grad_add(
input_parallel, dy, None, None, False, True
)
task.wait()
return dx, dw, dbias
else:
FeixLiu marked this conversation as resolved.
Show resolved Hide resolved
dy = dy.reshape([-1, dy.shape[-1]])
dw = paddle.matmul(
input_parallel.reshape([-1, input_parallel.shape[-1]]),
dy,
transpose_x=True,
)
if bias is None:
task.wait()
return dx, dw
else:
dbias = paddle.sum(dy, axis=0)
task.wait()
return dx, dw, dbias


class ColumnSequenceParallelLinear(Layer):
def __init__(
self,
Expand All @@ -250,9 +402,12 @@ def __init__(
if mp_group is None
else mp_group.nranks
)
assert (
self.world_size > 1
), "tensor parallel degree must be greater than 1 in sequence parallel"

self._name = name
self.is_mp = self.world_size > 1

assert (
gather_output is False
), "If sequence_parallel is True, \
Expand Down Expand Up @@ -285,6 +440,7 @@ def __init__(
)

self.weight.is_distributed = True if self.is_mp else False
self.fuse_matmul_bias = fuse_matmul_bias

if has_bias:
# initialize bias to zero like Megatron
Expand Down Expand Up @@ -312,18 +468,26 @@ def __init__(

self.linear = fused_linear

mp_configs = fleet.fleet._user_defined_strategy.hybrid_configs[
"mp_configs"
]
self.mp_async_allreduce = mp_configs.mp_async_allreduce

self.mp_fused_linear_param_grad_add = (
self.mp_async_allreduce
and mp_configs.mp_fused_linear_param_grad_add
)

def forward(self, x):
# sequence parallelism is same as model parallelism
# if sequence parallel is true, input shape is [s, b, h]
# else input shape is [b, s, h]
if self.is_mp:
input_parallel = AllGatherOp.apply(x)
else:
input_parallel = x
output = self.linear(
input_parallel, self.weight, self.bias, name=self._name
# sequence parallelism is same as model parallelis, if sequence parallel is true, input shape is [s, b, h],else input shape is [b, s, h]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

mp_async_allreduce也会有单独开启的情况,即mp_async_allreduce=Truemp_fused_linear_param_grad_add=False?可以在下个PR支持下。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok

return SPInnerOverlapLinear.apply(
x,
self.weight,
self.bias,
self.fuse_matmul_bias,
self.mp_fused_linear_param_grad_add,
self.model_parallel_group,
)
return output


class MPScale(PyLayer):
Expand Down
Loading