Skip to content

Commit

Permalink
[ConvBert P0 P1 P2] Add PretrainedConfig, unit tests and input_embs (#…
Browse files Browse the repository at this point in the history
…5886)

* [ConvBert P0 P1 P2] Add PretrainedConfig, unit tests and input_embs

* fix

* fix 'test_resize_embeddings'
  • Loading branch information
KB-Ding authored May 13, 2023
1 parent 9ed2d66 commit 0a48644
Show file tree
Hide file tree
Showing 9 changed files with 1,633 additions and 525 deletions.
3 changes: 2 additions & 1 deletion paddlenlp/transformers/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -73,6 +73,7 @@
from .chinesebert.configuration import *
from .chinesebert.modeling import *
from .chinesebert.tokenizer import *
from .convbert.configuration import *
from .convbert.modeling import *
from .convbert.tokenizer import *
from .ctrl.modeling import *
Expand Down
5 changes: 1 addition & 4 deletions paddlenlp/transformers/convbert/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -11,6 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .modeling import *
from .tokenizer import *
313 changes: 313 additions & 0 deletions paddlenlp/transformers/convbert/configuration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ConvBERT model configuration"""
from __future__ import annotations

from typing import Dict

from paddlenlp.transformers.configuration_utils import PretrainedConfig

__all__ = ["CONVBERT_PRETRAINED_INIT_CONFIGURATION", "ConvBertConfig", "CONVBERT_PRETRAINED_RESOURCE_FILES_MAP"]

CONVBERT_PRETRAINED_INIT_CONFIGURATION = {
"convbert-base": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 768,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-medium-small": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 384,
"initializer_range": 0.02,
"intermediate_size": 1536,
"max_position_embeddings": 512,
"num_attention_heads": 8,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 2,
},
"convbert-small": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 256,
"initializer_range": 0.02,
"intermediate_size": 1024,
"max_position_embeddings": 512,
"num_attention_heads": 4,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-base-generator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 768,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 256,
"initializer_range": 0.02,
"intermediate_size": 1024,
"max_position_embeddings": 512,
"num_attention_heads": 4,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-medium-small-generator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 96,
"initializer_range": 0.02,
"intermediate_size": 384,
"max_position_embeddings": 512,
"num_attention_heads": 2,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 2,
},
"convbert-small-generator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 64,
"initializer_range": 0.02,
"intermediate_size": 256,
"max_position_embeddings": 512,
"num_attention_heads": 1,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-base-discriminator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 768,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-medium-small-discriminator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 384,
"initializer_range": 0.02,
"intermediate_size": 1536,
"max_position_embeddings": 512,
"num_attention_heads": 8,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 2,
},
"convbert-small-discriminator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 256,
"initializer_range": 0.02,
"intermediate_size": 1024,
"max_position_embeddings": 512,
"num_attention_heads": 4,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
}

CONVBERT_PRETRAINED_RESOURCE_FILES_MAP = {
"model_state": {
"convbert-base": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-base/model_state.pdparams",
"convbert-medium-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-medium-small/model_state.pdparams",
"convbert-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-small/model_state.pdparams",
}
}


class ConvBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate a
ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ConvBert
convbert-base architecture. Configuration objects.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
======================================================
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id(int, optional):
The index of padding token in the token vocabulary.
Defaults to `0`.
pool_act (`str`, *optional*):
The non-linear activation function in the pooler.
Defaults to `"tanh"`.
embedding_size (int, optional):
Dimensionality of the embedding layer. Defaults to `768`.
conv_kernel_size (int, optional):
The size of the convolutional kernel.
Defaults to `9`.
head_ratio (int, optional):
Ratio gamma to reduce the number of attention heads.
Defaults to `2`.
num_groups (int, optional):
The number of groups for grouped linear layers for ConvBert model.
Defaults to `1`.
Examples:
```python
>>> from paddlenlp.transformers import ConvBertModel, ConvBertConfig
>>> # Initializing a ConvBERT configuration
>>> configuration = ConvBertConfig()
>>> # Initializing a model from the ConvBERT-base style configuration model
>>> model = ConvBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
======================================================
```"""
model_type = "convbert"
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
pretrained_init_configuration = CONVBERT_PRETRAINED_INIT_CONFIGURATION

def __init__(
self,
vocab_size: int = 30522,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 512,
type_vocab_size: int = 2,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
pad_token_id: int = 0,
pool_act: str = "tanh",
embedding_size: int = 768,
conv_kernel_size: int = 9,
head_ratio: int = 2,
num_groups: int = 1,
**kwargs
):

super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.pool_act = pool_act
self.layer_norm_eps = layer_norm_eps
self.embedding_size = embedding_size
self.conv_kernel_size = conv_kernel_size
self.head_ratio = head_ratio
self.num_groups = num_groups
Loading

0 comments on commit 0a48644

Please sign in to comment.