-
Notifications
You must be signed in to change notification settings - Fork 2.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ConvBert P0 P1 P2] Add PretrainedConfig, unit tests and input_embs (#…
…5886) * [ConvBert P0 P1 P2] Add PretrainedConfig, unit tests and input_embs * fix * fix 'test_resize_embeddings'
- Loading branch information
Showing
9 changed files
with
1,633 additions
and
525 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,313 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" ConvBERT model configuration""" | ||
from __future__ import annotations | ||
|
||
from typing import Dict | ||
|
||
from paddlenlp.transformers.configuration_utils import PretrainedConfig | ||
|
||
__all__ = ["CONVBERT_PRETRAINED_INIT_CONFIGURATION", "ConvBertConfig", "CONVBERT_PRETRAINED_RESOURCE_FILES_MAP"] | ||
|
||
CONVBERT_PRETRAINED_INIT_CONFIGURATION = { | ||
"convbert-base": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 768, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-medium-small": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 384, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1536, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 8, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 2, | ||
}, | ||
"convbert-small": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 256, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1024, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 4, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-base-generator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 768, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 256, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1024, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 4, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-medium-small-generator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 96, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 384, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 2, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 2, | ||
}, | ||
"convbert-small-generator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 64, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 256, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 1, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-base-discriminator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 768, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-medium-small-discriminator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 384, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1536, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 8, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 2, | ||
}, | ||
"convbert-small-discriminator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 256, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1024, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 4, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
} | ||
|
||
CONVBERT_PRETRAINED_RESOURCE_FILES_MAP = { | ||
"model_state": { | ||
"convbert-base": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-base/model_state.pdparams", | ||
"convbert-medium-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-medium-small/model_state.pdparams", | ||
"convbert-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-small/model_state.pdparams", | ||
} | ||
} | ||
|
||
|
||
class ConvBertConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate a | ||
ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a | ||
configuration with the defaults will yield a similar configuration to that of the ConvBert | ||
convbert-base architecture. Configuration objects. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
====================================================== | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 30522): | ||
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | ||
hidden_size (`int`, *optional*, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, *optional*, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, *optional*, defaults to 3072): | ||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | ||
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | ||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | ||
`"relu"`, `"silu"` and `"gelu_new"` are supported. | ||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, *optional*, defaults to 512): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
type_vocab_size (`int`, *optional*, defaults to 2): | ||
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
pad_token_id(int, optional): | ||
The index of padding token in the token vocabulary. | ||
Defaults to `0`. | ||
pool_act (`str`, *optional*): | ||
The non-linear activation function in the pooler. | ||
Defaults to `"tanh"`. | ||
embedding_size (int, optional): | ||
Dimensionality of the embedding layer. Defaults to `768`. | ||
conv_kernel_size (int, optional): | ||
The size of the convolutional kernel. | ||
Defaults to `9`. | ||
head_ratio (int, optional): | ||
Ratio gamma to reduce the number of attention heads. | ||
Defaults to `2`. | ||
num_groups (int, optional): | ||
The number of groups for grouped linear layers for ConvBert model. | ||
Defaults to `1`. | ||
Examples: | ||
```python | ||
>>> from paddlenlp.transformers import ConvBertModel, ConvBertConfig | ||
>>> # Initializing a ConvBERT configuration | ||
>>> configuration = ConvBertConfig() | ||
>>> # Initializing a model from the ConvBERT-base style configuration model | ||
>>> model = ConvBertModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
====================================================== | ||
```""" | ||
model_type = "convbert" | ||
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} | ||
pretrained_init_configuration = CONVBERT_PRETRAINED_INIT_CONFIGURATION | ||
|
||
def __init__( | ||
self, | ||
vocab_size: int = 30522, | ||
hidden_size: int = 768, | ||
num_hidden_layers: int = 12, | ||
num_attention_heads: int = 12, | ||
intermediate_size: int = 3072, | ||
hidden_act: str = "gelu", | ||
hidden_dropout_prob: float = 0.1, | ||
attention_probs_dropout_prob: float = 0.1, | ||
max_position_embeddings: int = 512, | ||
type_vocab_size: int = 2, | ||
initializer_range: float = 0.02, | ||
layer_norm_eps: float = 1e-12, | ||
pad_token_id: int = 0, | ||
pool_act: str = "tanh", | ||
embedding_size: int = 768, | ||
conv_kernel_size: int = 9, | ||
head_ratio: int = 2, | ||
num_groups: int = 1, | ||
**kwargs | ||
): | ||
|
||
super().__init__(pad_token_id=pad_token_id, **kwargs) | ||
self.vocab_size = vocab_size | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.intermediate_size = intermediate_size | ||
self.hidden_act = hidden_act | ||
self.hidden_dropout_prob = hidden_dropout_prob | ||
self.attention_probs_dropout_prob = attention_probs_dropout_prob | ||
self.max_position_embeddings = max_position_embeddings | ||
self.type_vocab_size = type_vocab_size | ||
self.initializer_range = initializer_range | ||
self.pool_act = pool_act | ||
self.layer_norm_eps = layer_norm_eps | ||
self.embedding_size = embedding_size | ||
self.conv_kernel_size = conv_kernel_size | ||
self.head_ratio = head_ratio | ||
self.num_groups = num_groups |
Oops, something went wrong.