Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ConvBert P0 P1 P2] Add PretrainedConfig, unit tests and input_embs #5886

Merged
merged 4 commits into from
May 13, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddlenlp/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@
from .chinesebert.configuration import *
from .chinesebert.modeling import *
from .chinesebert.tokenizer import *
from .convbert.configuration import *
from .convbert.modeling import *
from .convbert.tokenizer import *
from .ctrl.modeling import *
Expand Down
4 changes: 2 additions & 2 deletions paddlenlp/transformers/convbert/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from .modeling import *
from .tokenizer import *
# from .modeling import *
# from .tokenizer import *
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

直接删除

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改

307 changes: 307 additions & 0 deletions paddlenlp/transformers/convbert/configuration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,307 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的年份可以统一改下,下同

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ConvBERT model configuration"""
from __future__ import annotations

from typing import Dict

from paddlenlp.transformers.configuration_utils import PretrainedConfig

__all__ = ["CONVBERT_PRETRAINED_INIT_CONFIGURATION", "ConvBertConfig", "CONVBERT_PRETRAINED_RESOURCE_FILES_MAP"]

CONVBERT_PRETRAINED_INIT_CONFIGURATION = {
"convbert-base": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 768,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-medium-small": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 384,
"initializer_range": 0.02,
"intermediate_size": 1536,
"max_position_embeddings": 512,
"num_attention_heads": 8,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 2,
},
"convbert-small": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 256,
"initializer_range": 0.02,
"intermediate_size": 1024,
"max_position_embeddings": 512,
"num_attention_heads": 4,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-base-generator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 768,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 256,
"initializer_range": 0.02,
"intermediate_size": 1024,
"max_position_embeddings": 512,
"num_attention_heads": 4,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-medium-small-generator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 96,
"initializer_range": 0.02,
"intermediate_size": 384,
"max_position_embeddings": 512,
"num_attention_heads": 2,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 2,
},
"convbert-small-generator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 64,
"initializer_range": 0.02,
"intermediate_size": 256,
"max_position_embeddings": 512,
"num_attention_heads": 1,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-base-discriminator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 768,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
"convbert-medium-small-discriminator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 384,
"initializer_range": 0.02,
"intermediate_size": 1536,
"max_position_embeddings": 512,
"num_attention_heads": 8,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 2,
},
"convbert-small-discriminator": {
"attention_probs_dropout_prob": 0.1,
"embedding_size": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 256,
"initializer_range": 0.02,
"intermediate_size": 1024,
"max_position_embeddings": 512,
"num_attention_heads": 4,
"num_hidden_layers": 12,
"pad_token_id": 0,
"type_vocab_size": 2,
"vocab_size": 30522,
"conv_kernel_size": 9,
"head_ratio": 2,
"num_groups": 1,
},
}

CONVBERT_PRETRAINED_RESOURCE_FILES_MAP = {
"model_state": {
"convbert-base": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-base/model_state.pdparams",
"convbert-medium-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-medium-small/model_state.pdparams",
"convbert-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-small/model_state.pdparams",
}
}


class ConvBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate a
ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ConvBert
conv-bert-base architecture. Configuration objects.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

======================================================
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.

Examples:

```python
>>> from paddlenlp.transformers import BertModel, BertConfig
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的示例可以修改成convbert

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改


>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()

>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = BertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
======================================================
```"""
model_type = "convbert"
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
pretrained_init_configuration = CONVBERT_PRETRAINED_INIT_CONFIGURATION

def __init__(
self,
vocab_size: int = 30522,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 512,
type_vocab_size: int = 2,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
pad_token_id: int = 0,
pool_act: str = "tanh",
embedding_size: int = 768,
conv_kernel_size: int = 9,
head_ratio: int = 2,
num_groups: int = 1,
**kwargs
):

super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.pool_act = pool_act
self.layer_norm_eps = layer_norm_eps
self.embedding_size = embedding_size
self.conv_kernel_size = conv_kernel_size
self.head_ratio = head_ratio
self.num_groups = num_groups
Loading