-
Notifications
You must be signed in to change notification settings - Fork 2.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[ConvBert P0 P1 P2] Add PretrainedConfig, unit tests and input_embs #5886
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里的年份可以统一改下,下同 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 已修改 |
||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" ConvBERT model configuration""" | ||
from __future__ import annotations | ||
|
||
from typing import Dict | ||
|
||
from paddlenlp.transformers.configuration_utils import PretrainedConfig | ||
|
||
__all__ = ["CONVBERT_PRETRAINED_INIT_CONFIGURATION", "ConvBertConfig", "CONVBERT_PRETRAINED_RESOURCE_FILES_MAP"] | ||
|
||
CONVBERT_PRETRAINED_INIT_CONFIGURATION = { | ||
"convbert-base": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 768, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-medium-small": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 384, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1536, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 8, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 2, | ||
}, | ||
"convbert-small": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 256, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1024, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 4, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-base-generator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 768, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 256, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1024, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 4, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-medium-small-generator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 96, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 384, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 2, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 2, | ||
}, | ||
"convbert-small-generator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 64, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 256, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 1, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-base-discriminator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 768, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
"convbert-medium-small-discriminator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 384, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1536, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 8, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 2, | ||
}, | ||
"convbert-small-discriminator": { | ||
"attention_probs_dropout_prob": 0.1, | ||
"embedding_size": 128, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 256, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 1024, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 4, | ||
"num_hidden_layers": 12, | ||
"pad_token_id": 0, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"conv_kernel_size": 9, | ||
"head_ratio": 2, | ||
"num_groups": 1, | ||
}, | ||
} | ||
|
||
CONVBERT_PRETRAINED_RESOURCE_FILES_MAP = { | ||
"model_state": { | ||
"convbert-base": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-base/model_state.pdparams", | ||
"convbert-medium-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-medium-small/model_state.pdparams", | ||
"convbert-small": "http://bj.bcebos.com/paddlenlp/models/transformers/convbert/convbert-small/model_state.pdparams", | ||
} | ||
} | ||
|
||
|
||
class ConvBertConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate a | ||
ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a | ||
configuration with the defaults will yield a similar configuration to that of the ConvBert | ||
conv-bert-base architecture. Configuration objects. | ||
|
||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
|
||
====================================================== | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 30522): | ||
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | ||
hidden_size (`int`, *optional*, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, *optional*, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, *optional*, defaults to 3072): | ||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | ||
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | ||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | ||
`"relu"`, `"silu"` and `"gelu_new"` are supported. | ||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, *optional*, defaults to 512): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
type_vocab_size (`int`, *optional*, defaults to 2): | ||
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | ||
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | ||
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | ||
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | ||
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | ||
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
classifier_dropout (`float`, *optional*): | ||
The dropout ratio for the classification head. | ||
|
||
Examples: | ||
|
||
```python | ||
>>> from paddlenlp.transformers import BertModel, BertConfig | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里的示例可以修改成convbert There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 已修改 |
||
|
||
>>> # Initializing a BERT bert-base-uncased style configuration | ||
>>> configuration = BertConfig() | ||
|
||
>>> # Initializing a model from the bert-base-uncased style configuration | ||
>>> model = BertModel(configuration) | ||
|
||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
====================================================== | ||
```""" | ||
model_type = "convbert" | ||
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} | ||
pretrained_init_configuration = CONVBERT_PRETRAINED_INIT_CONFIGURATION | ||
|
||
def __init__( | ||
self, | ||
vocab_size: int = 30522, | ||
hidden_size: int = 768, | ||
num_hidden_layers: int = 12, | ||
num_attention_heads: int = 12, | ||
intermediate_size: int = 3072, | ||
hidden_act: str = "gelu", | ||
hidden_dropout_prob: float = 0.1, | ||
attention_probs_dropout_prob: float = 0.1, | ||
max_position_embeddings: int = 512, | ||
type_vocab_size: int = 2, | ||
initializer_range: float = 0.02, | ||
layer_norm_eps: float = 1e-12, | ||
pad_token_id: int = 0, | ||
pool_act: str = "tanh", | ||
embedding_size: int = 768, | ||
conv_kernel_size: int = 9, | ||
head_ratio: int = 2, | ||
num_groups: int = 1, | ||
**kwargs | ||
): | ||
|
||
super().__init__(pad_token_id=pad_token_id, **kwargs) | ||
self.vocab_size = vocab_size | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.intermediate_size = intermediate_size | ||
self.hidden_act = hidden_act | ||
self.hidden_dropout_prob = hidden_dropout_prob | ||
self.attention_probs_dropout_prob = attention_probs_dropout_prob | ||
self.max_position_embeddings = max_position_embeddings | ||
self.type_vocab_size = type_vocab_size | ||
self.initializer_range = initializer_range | ||
self.pool_act = pool_act | ||
self.layer_norm_eps = layer_norm_eps | ||
self.embedding_size = embedding_size | ||
self.conv_kernel_size = conv_kernel_size | ||
self.head_ratio = head_ratio | ||
self.num_groups = num_groups |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
直接删除
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
已修改