The dataset and code of the paper "CPGA: Coding Priors-Guided Aggregation Network for Compressed Video Quality Enhancement".
CUDA==11.6 Python==3.7 Pytorch==1.13
conda create -n cpga python=3.7 -y && conda activate cpga
git clone --depth=1 https://github.com/VQE-CPGA/CPGA && cd VQE-CPGA/CPGA/
# given CUDA 11.6
python -m pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
python -m pip install tqdm lmdb pyyaml opencv-python scikit-image
cd ops/dcn/
bash build.sh
Check if DCNv2 work (optional)
python simple_check.py
Download raw and compressed videos
Please check BaiduPan,Code [qix5].
Edit YML
You need to edit option_CPGA_vcp_#_QP#.yml file.
Generate LMDB
The LMDB generation for speeding up IO during training.
python create_vcp.py --opt_path option_CPGA_vcp_#_QP#.yml
Finally, the VCP dataset root will be sym-linked to the folder ./data/ automatically.
We use the JCT-VC testing dataset in JCT-VC. Download raw and compressed videos BaiduPan,Code [qix5].
python train_CPGA.py --opt_path ./config/option_CPGA_vcp_LDB_22.yml
python test_CPGA.py --opt_path ./config/option_CPGA_vcp_LDB_22.yml
If this repository is helpful to your research, please cite our paper:
@inproceedings{zhu2024cpga,
title={CPGA: Coding Priors-Guided Aggregation Network for Compressed Video Quality Enhancement},
author={Zhu, Qiang and Hao, Jinhua and Ding, Yukang and Liu, Yu and Mo, Qiao and Sun, Ming and Zhou, Chao and Zhu, Shuyuan},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}
}
@article{zhu2024deep,
title={Deep Compressed Video Super-Resolution With Guidance of Coding Priors},
author={Qiang Zhu, Feiyu Chen, Yu Liu, Shuyuan Zhu, Bing Zeng},
journal={ IEEE Transactions on Broadcasting }
}
@article{zhu2024compressed,
title={Compressed Video Quality Enhancement with Temporal Group Alignment and Fusion},
author={Qiang, Zhu and Yajun, Qiu and Yu, Liu and Shuyuan, Zhu and Bing, Zeng},
journal={IEEE Signal Processing Letters}
}
@inproceedings{mo2025oapt,
title={OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal},
author={Mo, Qiao and Ding, Yukang and Hao, Jinhua and Zhu, Qiang and Sun, Ming and Zhou, Chao and Chen, Feiyu and Zhu, Shuyuan},
booktitle={European Conference on Computer Vision}
}
We also released some compressed video quality enhancement models, e.g., STDF, RFDA, CF-STIF, and STDR.
Our project is built on the STDF. If there are some problems with the implementation, please refer to STDF. We adopt Apache License v2.0. For other licenses, please refer to DCNv2.