Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

move some utilities in YaoExtensions to Yao.EasyBuild submodule. #315

Merged
merged 9 commits into from
Dec 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions src/EasyBuild/block_extension/FSimGate.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
export FSimGate, fsim_block

"""
FSimGate{T<:Number} <: PrimitiveBlock{2}

The two parameter `FSim` gate.

References
-------------------------
* Arute, Frank, et al. "Quantum supremacy using a programmable superconducting processor." Nature 574.7779 (2019): 505-510.
"""
mutable struct FSimGate{T<:Number} <: PrimitiveBlock{2}
theta::T
phi::T
end

function Base.:(==)(fs1::FSimGate, fs2::FSimGate)
return fs1.theta == fs2.theta && fs1.phi == fs2.phi
end

function YaoAPI.mat(::Type{T}, fs::FSimGate) where T
θ, ϕ = fs.theta, fs.phi
T[1 0 0 0;
0 cos(θ) -im*sin(θ) 0;
0 -im*sin(θ) cos(θ) 0;
0 0 0 exp(-im*ϕ)]
end

YaoAPI.iparams_eltype(::FSimGate{T}) where T = T
YaoAPI.getiparams(fs::FSimGate{T}) where T = (fs.theta, fs.phi)
function YaoAPI.setiparams!(fs::FSimGate{T}, θ, ϕ) where T
fs.theta = θ
fs.phi = ϕ
return fs
end

YaoBlocks.@dumpload_fallback FSimGate FSimGate
YaoBlocks.Optimise.to_basictypes(fs::FSimGate) = fsim_block(fs.theta, fs.phi)

"""
fsim_block(θ::Real, ϕ::Real)

The circuit representation of FSim gate.
"""
function fsim_block(θ::Real, ϕ::Real)
if θ ≈ π/2
return cphase(2,2,1,-ϕ)*SWAP*rot(kron(Z,Z), -π/2)*put(2,1=>phase(-π/4))
else
return cphase(2,2,1,-ϕ)*rot(SWAP,2*θ)*rot(kron(Z,Z), -θ)*put(2,1=>phase(θ/2))
end
end
3 changes: 3 additions & 0 deletions src/EasyBuild/block_extension/blocks.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import .YaoBlocks: _apply!
include("shortcuts.jl")
include("FSimGate.jl")
17 changes: 17 additions & 0 deletions src/EasyBuild/block_extension/shortcuts.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
export ISWAP, SqrtX, SqrtY, SqrtW, singlet_block
export ISWAPGate, SqrtXGate, SqrtYGate, SqrtWGate, CPhaseGate

const CPhaseGate{N, T} = ControlBlock{N,<:ShiftGate{T},<:Any}

@const_gate ISWAP = PermMatrix([1,3,2,4], [1,1.0im,1.0im,1])
@const_gate SqrtX = [0.5+0.5im 0.5-0.5im; 0.5-0.5im 0.5+0.5im]
@const_gate SqrtY = [0.5+0.5im -0.5-0.5im; 0.5+0.5im 0.5+0.5im]
# √W is a non-Clifford gate
@const_gate SqrtW = mat(rot((X+Y)/sqrt(2), π/2))

"""
singlet_block(θ::Real, ϕ::Real)

The circuit block for initialzing a singlet state.
"""
singlet_block() = chain(put(2, 1=>chain(X, H)), control(2, -1, 2=>X))
13 changes: 13 additions & 0 deletions src/EasyBuild/easybuild.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
module EasyBuild
using YaoBlocks, YaoBlocks.LuxurySparse, YaoBlocks.YaoAPI, YaoBlocks.YaoArrayRegister
using YaoBlocks.LinearAlgebra
include("block_extension/blocks.jl")
include("general_U4.jl")
include("phaseestimation.jl")
include("qft_circuit.jl")
include("hamiltonians.jl")
include("variational_circuit.jl")
include("supremacy_circuit.jl")
include("google53.jl")
include("hadamardtest.jl")
end
47 changes: 47 additions & 0 deletions src/EasyBuild/general_U4.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
"""
Impliments PRA 69.062321.
"""

export general_U2, general_U4

"""
general_U2(θ1, θ2, θ3; ϕ=nothing)

A general single qubits gate: ``e^(iϕ)R_z(θ_3)R_y(θ_2)R_z(θ_1)``.
Leave `ϕ` as `nothing` to fix the global phase.
"""
function general_U2(θ1, θ2, θ3; ϕ=nothing)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should this just be a block? this is also needed to map to openQASM etc.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It sounds good, but let us do it in another PR. Let us convert your comment to an issue?

gate = Rz(θ3) * Ry(θ2) * Rz(θ1)
if ϕ !== nothing
push!(gate, phase(ϕ))
end
return gate
end

"""
general_U4([params...]) -> AbstractBlock

A general two qubits gate decomposed to (CNOT, Ry, Rz), parameters default to 0.

!!!note

Although the name is U(4), This is actually a SU(4) gate up to a phase, the phase `det(dispatch!(general_U4(), :random))` is fixed to -1.
"""
general_U4() = general_U4(zeros(15))
function general_U4(params)
if length(params) != 15
throw(ArgumentError("The number of parameters must be 15, got $(length(params))"))
end
return chain(2, [
put(2, 1=>general_U2(params[1:3]...)),
put(2, 2=>general_U2(params[4:6]...)),
cnot(2, 2, 1),
put(2, 1=>Rz(params[7])),
put(2, 2=>Ry(params[8])),
cnot(2, 1, 2),
put(2, 2=>Ry(params[9])),
cnot(2, 2, 1),
put(2, 1=>general_U2(params[10:12]...)),
put(2, 2=>general_U2(params[13:15]...))
])
end
104 changes: 104 additions & 0 deletions src/EasyBuild/google53.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
export Lattice53, rand_google53

entangler_google53(nbits::Int, i::Int, j::Int) = put(nbits, (i,j)=>FSimGate(π/2, π/6))

struct Lattice53
labels::Matrix{Int}
end

function Lattice53(;nbits::Int=53)
config = ones(Bool, 5, 12)
config[end,2:2:end] .= false
config[1, 7] = false
labels = zeros(Int, 5, 12)
k = 0
for (i,c) in enumerate(config)
if c
k += 1
labels[i] = k
k>=nbits && break
end
end
return Lattice53(labels)
end

nbits(lattice::Lattice53) = maximum(lattice.labels)

function Base.getindex(lattice::Lattice53, i, j)
1<=i<=size(lattice.labels, 1) && 1<=j<=size(lattice.labels, 2) ? lattice.labels[i,j] : 0
end
upperleft(lattice::Lattice53,i,j) = lattice[i-j%2,j-1]
lowerleft(lattice::Lattice53,i,j) = lattice[i+(j-1)%2,j-1]
upperright(lattice::Lattice53,i,j) = lattice[i-j%2,j+1]
lowerright(lattice::Lattice53,i,j) = lattice[i+(j-1)%2,j+1]

function pattern53(lattice::Lattice53, chr::Char)
res = Tuple{Int,Int}[]
# i0, di, j0, dj and direction
di = 1 + (chr>'D')
dj = 2 - (chr>'D')
j0 = 1 + min(dj-1, mod(chr-'A',2))
direction = 'C'<=chr<='F' ? lowerright : upperright
for j=j0:dj:12
i0 = chr>'D' ? mod((chr-'D') + (j-(chr>='G'))÷2, 2) : 1
for i = i0:di:5
src = lattice[i, j]
dest = direction(lattice, i, j)
src!=0 && dest !=0 && push!(res, (src, dest))
end
end
return res
end

function print_lattice53(lattice, pattern)
for i_=1:10
i = (i_+1)÷2
for j=1:12
if i_%2 == j%2 && lattice[i,j]!=0
print(" ∘ ")
else
print(" ")
end
end
println()
for j=1:12
if i_%2 == j%2 && lattice[i,j]!=0
hasll = (lowerleft(lattice, i, j), lattice[i,j]) in pattern
haslr = (lattice[i,j], lowerright(lattice, i, j)) in pattern
print(hasll ? "/ " : " ")
print(haslr ? " \\" : " ")
else
print(" ")
end
end
println()
end
end

"""
rand_google53(depth::Int; nbits=53) -> AbstactBlock

Google supremacy circuit with 53 qubits, also know as the Sycamore quantum supremacy circuits.

References
-------------------------
* Arute, Frank, et al. "Quantum supremacy using a programmable superconducting processor." Nature 574.7779 (2019): 505-510.
"""
function rand_google53(depth::Int; nbits::Int=53)
c = chain(nbits)
lattice = Lattice53(nbits=nbits)
k = 0
for pattern in Iterators.cycle(['A', 'B', 'C', 'D', 'C', 'D', 'A', 'B'])
push!(c, rand_google53_layer(lattice, pattern))
k += 1
k>=depth && break
end
return c
end

function rand_google53_layer(lattice, pattern)
nbit = nbits(lattice)
chain(nbit, chain(nbit, [put(nbit, i=>rand([SqrtW, SqrtX, SqrtY])) for i=1:nbit]),
chain(nbit, [entangler_google53(nbit,i,j) for (i,j) in pattern53(lattice, pattern)])
)
end
44 changes: 44 additions & 0 deletions src/EasyBuild/hadamardtest.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
export hadamard_test, hadamard_test_circuit, swap_test_circuit

"""
hadamard_test_circuit(U::AbstractBlock, ϕ::Real)

The Hadamard test circuit.

References
-----------------------
* [Wiki](https://en.wikipedia.org/wiki/Hadamard_test_(quantum_computation))
"""
function hadamard_test_circuit(U::AbstractBlock{N}, ϕ::Real) where N
chain(N+1, put(N+1, 1=>H),
put(N+1, 1=>Rz(ϕ)),
control(N+1, 1, 2:N+1=>U), # get matrix first, very inefficient
put(N+1, 1=>H)
)
end

function hadamard_test(U::AbstractBlock{N}, reg::AbstractRegister, ϕ::Real) where N
c = hadamard_test_circuit(U, ϕ::Real)
reg = join(reg, zero_state(1))
expect(put(N+1, 1=>Z), reg |> c)
end

"""
swap_test_circuit(nbit::Int, nstate::Int, ϕ::Real)

The swap test circuit for computing the overlap between multiple density matrices.
The `nbit` and `nstate` specifies the number of qubit in each state and how many state we want to compare.

References
-----------------------
* Ekert, Artur K., et al. "Direct estimations of linear and nonlinear functionals of a quantum state." Physical review letters 88.21 (2002): 217901.
"""
function swap_test_circuit(nbit::Int, nstate::Int, ϕ::Real)
N = nstate*nbit + 1

chain(N, put(N, 1=>H),
put(N, 1=>Rz(ϕ)),
chain(N, [chain(N, [control(N, 1, (i+(k*nbit-nbit)+1, i+k*nbit+1)=>SWAP) for i=1:nbit]) for k=1:nstate-1]), # get matrix first, very inefficient
put(N, 1=>H)
)
end
31 changes: 31 additions & 0 deletions src/EasyBuild/hamiltonians.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
export heisenberg, transverse_ising

"""
heisenberg(nbit::Int; periodic::Bool=true)

1D Heisenberg hamiltonian defined as ``\\sum_{i=1}^{n} X_{i}X_{i+1} + Y_{i}Y_{i+1} + Z_{i}Z_{i+1}``, where ``n`` is specified by `nbit`.
`periodic` means the boundary condition is periodic.

References
----------------------
* de Oliveira, Mário J. "Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg chain obtained by use of a Monte Carlo method." Physical Review B 48.9 (1993): 6141-6143.
"""
function heisenberg(nbit::Int; periodic::Bool=true)
map(1:(periodic ? nbit : nbit-1)) do i
j=i%nbit+1
repeat(nbit,X,(i,j)) + repeat(nbit, Y, (i,j)) + repeat(nbit, Z, (i,j))
end |> sum
end

"""
transverse_ising(nbit::Int, h::Number; periodic::Bool=true)

1D transverse Ising hamiltonian defined as ``\\sum_{i=1}^{n} hX_{i} + Z_{i}Z_{i+1}``, where ``n`` is specified by `nbit`.
`periodic` means the boundary condition is periodic.
"""
function transverse_ising(nbit::Int, h::Number; periodic::Bool=true)
ising_term = map(1:(periodic ? nbit : nbit-1)) do i
repeat(nbit,Z,(i,i%nbit+1))
end |> sum
ising_term + h*sum(map(i->put(nbit,i=>X), 1:nbit))
end
53 changes: 53 additions & 0 deletions src/EasyBuild/phaseestimation.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
export phase_estimation_circuit, phase_estimation_analysis

"""
phase_estimation_circuit(unitarygate::GeneralMatrixBlock, n_reg, n_b) -> ChainBlock

Phase estimation circuit. Input arguments are

* `unitarygate`: the input unitary matrix.
* `n_reg`: the number of bits to store phases,
* `n_b`: the number of bits to store vector.

References
----------------------
[Wiki](https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm)
"""
function phase_estimation_circuit(unitarygate::GeneralMatrixBlock, n_reg::Int, n_b::Int)
nbit = n_b + n_reg
# Apply Hadamard Gate.
hs = repeat(nbit, H, 1:n_reg)

# Construct a control circuit.
control_circuit = chain(nbit)
for i = 1:n_reg
push!(control_circuit, control(nbit, (i,), (n_reg+1:nbit...,)=>unitarygate))
if i != n_reg
unitarygate = matblock(mat(unitarygate) * mat(unitarygate))
end
end

# Inverse QFT Block.
iqft = subroutine(nbit, qft_circuit(n_reg)',[1:n_reg...,])
chain(hs, control_circuit, iqft)
end

"""
phase_estimation_analysis(eigenvectors::Matrix, reg::ArrayReg) -> Tuple

Analyse phase estimation result using state projection.
It returns a tuple of (most probable configuration, the overlap matrix, the relative probability for this configuration)
`eigenvectors` is the eigen vectors of the unitary gate matrix, while `reg` is the result of phase estimation.
"""
function phase_estimation_analysis(eigenvectors::AbstractMatrix, reg::ArrayReg)
overlap = eigenvectors'*state(reg)
amp_relative = Float64[]
bs = Int[]

for b in basis(overlap)
mc = argmax(view(overlap, b+1, :) .|> abs)-1
push!(amp_relative, abs2(overlap[b+1, mc+1])/sum(overlap[b+1, :] .|> abs2))
push!(bs, mc)
end
bs, overlap, amp_relative
end
20 changes: 20 additions & 0 deletions src/EasyBuild/qft_circuit.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
export qft_circuit

"""
cphase(nbits, i, j, θ)

Control-phase gate.
"""
cphase(nbits::Int, i::Int, j::Int, θ::T) where T = control(nbits, i, j=>shift(θ))

"""
qft_circuit(n)

The quantum Fourer transformation (QFT) circuit.

References
------------------------
* [Wiki](https://en.wikipedia.org/wiki/Quantum_Fourier_transform)
"""
qft_circuit(n::Int) = chain(n, hcphases(n, i) for i = 1:n)
hcphases(n, i) = chain(n, i==j ? put(i=>H) : cphase(n, j, i, 2π/(2^(j-i+1))) for j in i:n);
Loading