Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create q_full_adder.py #6735

Merged
merged 7 commits into from
Oct 16, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 112 additions & 0 deletions quantum/q_full_adder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
"""
Build the quantum full adder (QFA) for any sum of
two quantum registers and one carry in. This circuit
is designed using the Qiskit framework. This
experiment run in IBM Q simulator with 1000 shots.
.
References:
https://www.quantum-inspire.com/kbase/full-adder/
"""

import math
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Kinda cool how pre-commit fixes all this stuff… trailing whitespace, unsorted imports, single quotes, etc.


import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute


def quantum_full_adder(
input_1: int = 1, input_2: int = 1, carry_in: int = 1
) -> qiskit.result.counts.Counts:
"""
# >>> q_full_adder(inp_1, inp_2, cin)
# the inputs can be 0/1 for qubits in define
# values, or can be in a superposition of both
# states with hadamard gate using the input value 2.
# result for default values: {11: 1000}
qr_0: ──■────■──────────────■──
│ ┌─┴─┐ ┌─┴─┐
qr_1: ──■──┤ X ├──■────■──┤ X ├
│ └───┘ │ ┌─┴─┐└───┘
qr_2: ──┼─────────■──┤ X ├─────
┌─┴─┐ ┌─┴─┐└───┘
qr_3: ┤ X ├─────┤ X ├──────────
└───┘ └───┘
cr: 2/═════════════════════════
Args:
input_1: input 1 for the circuit.
input_2: input 2 for the circuit.
carry_in: carry in for the circuit.
Returns:
qiskit.result.counts.Counts: sum result counts.
>>> quantum_full_adder(1,1,1)
{'11': 1000}
>>> quantum_full_adder(0,0,1)
{'01': 1000}
>>> quantum_full_adder(1,0,1)
{'10': 1000}
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add some tests that fail... Negative numbers, floating point numbers, letters, etc.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done!

>>> quantum_full_adder(1,-4,1)
Traceback (most recent call last):
...
ValueError: inputs must be positive.
>>> quantum_full_adder('q',0,1)
Traceback (most recent call last):
...
TypeError: inputs must be integers.
>>> quantum_full_adder(0.5,0,1)
Traceback (most recent call last):
...
ValueError: inputs must be exact integers.
>>> quantum_full_adder(0,1,3)
Traceback (most recent call last):
...
ValueError: inputs must be less or equal to 2.
"""
if (type(input_1) == str) or (type(input_2) == str) or (type(carry_in) == str):
raise TypeError("inputs must be integers.")

if (input_1 < 0) or (input_2 < 0) or (carry_in < 0):
raise ValueError("inputs must be positive.")

if (
(math.floor(input_1) != input_1)
or (math.floor(input_2) != input_2)
or (math.floor(carry_in) != carry_in)
):
raise ValueError("inputs must be exact integers.")

if (input_1 > 2) or (input_2 > 2) or (carry_in > 2):
raise ValueError("inputs must be less or equal to 2.")

# build registers
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(2, "cr")
# list the entries
entry = [input_1, input_2, carry_in]

quantum_circuit = QuantumCircuit(qr, cr)

for i in range(0, 3):
if entry[i] == 2:
quantum_circuit.h(i) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(i) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(i) # for 0 entries

# build the circuit
quantum_circuit.ccx(0, 1, 3) # ccx = toffoli gate
quantum_circuit.cx(0, 1)
quantum_circuit.ccx(1, 2, 3)
quantum_circuit.cx(1, 2)
quantum_circuit.cx(0, 1)

quantum_circuit.measure([2, 3], cr) # measure the last two qbits

backend = Aer.get_backend("qasm_simulator")
job = execute(quantum_circuit, backend, shots=1000)

return job.result().get_counts(quantum_circuit)


if __name__ == "__main__":
print(f"Total sum count for state is: {quantum_full_adder(1,1,1)}")