Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update multi scatter Ignore nan in the sum of peaks. #1162

Merged
merged 20 commits into from
May 11, 2023
Merged
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 37 additions & 34 deletions straxen/plugins/events/multi_scatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,29 +7,12 @@
class EventInfoMS(strax.Plugin):
"""
Get the sum of s2 and s1,
Get the sum of cs2 inside the drift length.
Get the sum of cs2 inside the drift length.
"""
__version__ = '0.0.1'
depends_on = ('event_info', 'peak_basics','peaks_per_event','peaks_corrections')
provides = 'event_MS_naive'

def infer_dtype(self):
dtype = []
dtype += [
((f's1_sum'), np.float32),
((f'cs1_multi'), np.float32),
((f'cs1_multi_wo_timecorr'), np.float32),
((f's2_sum'), np.float32),
((f'cs2_sum'), np.float32),
((f'cs2_wo_timecorr_sum'), np.float32),
((f'cs2_wo_elifecorr_sum'), np.float32),
((f'cs2_area_fraction_sum'), np.float32),
((f'ces_sum'), np.float32),
((f'e_charge_sum'), np.float32),
]
dtype += strax.time_fields
return dtype

save_when = strax.SaveWhen.TARGET

# config options don't double cache things from the resource cache!
Expand All @@ -55,36 +38,56 @@ def infer_dtype(self):
max_drift_length = straxen.URLConfig(
default=straxen.tpc_z, infer_type=False,
help='Total length of the TPC from the bottom of gate to the '
'top of cathode wires [cm]', )
'top of cathode wires [cm]')

def infer_dtype(self):
dtype = []
dtype += [
((f's1_sum'), np.float32),
((f'cs1_multi'), np.float32),
((f'cs1_multi_wo_timecorr'), np.float32),
((f's2_sum'), np.float32),
((f'cs2_sum'), np.float32),
((f'cs2_wo_timecorr_sum'), np.float32),
((f'cs2_wo_elifecorr_sum'), np.float32),
((f'cs2_area_fraction_sum'), np.float32),
((f'ces_sum'), np.float32),
((f'e_charge_sum'), np.float32)]
dtype += strax.time_fields
return dtype

def setup(self):
self.drift_time_max = int(self.max_drift_length / self.electron_drift_velocity)

def cs1_to_e(self, x):
return self.lxe_w * x / self.g1

def cs2_to_e(self, x):
return self.lxe_w * x / self.g2


def compute(self, events, peaks):
split_peaks = strax.split_by_containment(peaks, events)
result = np.zeros(len(events), self.infer_dtype())
#result['s2_sum'] = np.zeros(len(events))
#1. Assign peaks features to main S1 and main S2 in the event
# result['s2_sum'] = np.zeros(len(events))

# Assign peaks features to main S1 and main S2 in the event
for event_i, (event, sp) in enumerate(zip(events, split_peaks)):
cond = (sp["type"]==2)&(sp["drift_time"]>0)&(sp["drift_time"]< 1.01 * self.drift_time_max)&(sp["cs2"]>0)
result[f's2_sum'][event_i] = np.sum(sp[cond]['area'])
result[f'cs2_sum'][event_i] = np.sum(sp[cond]['cs2'])
result[f'cs2_wo_timecorr_sum'][event_i] = np.sum(sp[cond]['cs2_wo_timecorr'])
result[f'cs2_wo_elifecorr_sum'][event_i] = np.sum(sp[cond]['cs2_wo_elifecorr'])
result[f'cs2_area_fraction_sum'][event_i] = np.sum(sp[cond]['cs2_area_fraction_top'])
result[f's1_sum'][event_i] = np.sum(sp[sp["type"]==1]['area'])
if np.sum(sp[cond]['cs2']) > 0:
result[f'cs1_multi_wo_timecorr'][event_i] = event["s1_area"] * np.average(sp[cond]['s1_xyz_correction_factor'], weights = sp[cond]['cs2'])
result[f'cs1_multi'][event_i] = result[f'cs1_multi_wo_timecorr'][event_i] * np.average(sp[cond]['s1_rel_light_yield_correction_factor'], weights = sp[cond]['cs2'])
cond = (sp["type"] == 2) & (sp["drift_time"] > 0)
cond &= (sp["drift_time"] < 1.01 * self.drift_time_max) & (sp["cs2"] > 0)
dachengx marked this conversation as resolved.
Show resolved Hide resolved
result[f's2_sum'][event_i] = np.nansum(sp[cond]['area'])
dachengx marked this conversation as resolved.
Show resolved Hide resolved
dachengx marked this conversation as resolved.
Show resolved Hide resolved
dachengx marked this conversation as resolved.
Show resolved Hide resolved
result[f'cs2_sum'][event_i] = np.nansum(sp[cond]['cs2'])
dachengx marked this conversation as resolved.
Show resolved Hide resolved
result[f'cs2_wo_timecorr_sum'][event_i] = np.nansum(sp[cond]['cs2_wo_timecorr'])
dachengx marked this conversation as resolved.
Show resolved Hide resolved
result[f'cs2_wo_elifecorr_sum'][event_i] = np.nansum(sp[cond]['cs2_wo_elifecorr'])
dachengx marked this conversation as resolved.
Show resolved Hide resolved
result[f'cs2_area_fraction_sum'][event_i] = np.nansum(sp[cond]['cs2_area_fraction_top'])
result[f's1_sum'][event_i] = np.nansum(sp[sp["type"] == 1]['area'])
if np.sum(sp[cond]['cs2']) > 0:
result[f'cs1_multi_wo_timecorr'][event_i] = event["s1_area"] * np.average(
sp[cond]['s1_xyz_correction_factor'], weights=sp[cond]['cs2'])
result[f'cs1_multi'][event_i] = result[f'cs1_multi_wo_timecorr'][event_i] * np.average(
sp[cond]['s1_rel_light_yield_correction_factor'], weights=sp[cond]['cs2'])
el = self.cs1_to_e(result[f'cs1_multi'])
ec = self.cs2_to_e(result[f'cs2_sum'])
result[f'ces_sum'] = el+ec
result[f'ces_sum'] = el + ec
result[f'e_charge_sum'] = ec
result['time'] = events['time']
result['endtime'] = strax.endtime(events)
Expand Down