-
Notifications
You must be signed in to change notification settings - Fork 1.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Move Covariance
(Sample) covar
/ covar_samp
to be a User Defined Aggregate Function
#10372
Changes from 6 commits
c6d41b7
fa1c55a
7fe2049
3a53b82
ebc1d8f
aa9e800
3e5cb0a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,319 @@ | ||||||
// Licensed to the Apache Software Foundation (ASF) under one | ||||||
// or more contributor license agreements. See the NOTICE file | ||||||
// distributed with this work for additional information | ||||||
// regarding copyright ownership. The ASF licenses this file | ||||||
// to you under the Apache License, Version 2.0 (the | ||||||
// "License"); you may not use this file except in compliance | ||||||
// with the License. You may obtain a copy of the License at | ||||||
// | ||||||
// http://www.apache.org/licenses/LICENSE-2.0 | ||||||
// | ||||||
// Unless required by applicable law or agreed to in writing, | ||||||
// software distributed under the License is distributed on an | ||||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||||||
// KIND, either express or implied. See the License for the | ||||||
// specific language governing permissions and limitations | ||||||
// under the License. | ||||||
|
||||||
//! Defines the covariance aggregations. | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
|
||||||
use std::fmt::Debug; | ||||||
|
||||||
use arrow::{ | ||||||
array::{ArrayRef, Float64Array, UInt64Array}, | ||||||
compute::kernels::cast, | ||||||
datatypes::{DataType, Field}, | ||||||
}; | ||||||
|
||||||
use datafusion_common::{ | ||||||
downcast_value, plan_err, unwrap_or_internal_err, DataFusionError, Result, | ||||||
ScalarValue, | ||||||
}; | ||||||
use datafusion_expr::{ | ||||||
function::AccumulatorArgs, type_coercion::aggregates::NUMERICS, | ||||||
utils::format_state_name, Accumulator, AggregateUDFImpl, Signature, Volatility, | ||||||
}; | ||||||
use datafusion_physical_expr_common::aggregate::stats::StatsType; | ||||||
|
||||||
make_udaf_expr_and_func!( | ||||||
CovarianceSample, | ||||||
covar_samp, | ||||||
y x, | ||||||
"Computes the sample covariance.", | ||||||
covar_samp_udaf | ||||||
); | ||||||
|
||||||
pub struct CovarianceSample { | ||||||
signature: Signature, | ||||||
aliases: Vec<String>, | ||||||
} | ||||||
|
||||||
impl Debug for CovarianceSample { | ||||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { | ||||||
f.debug_struct("CovarianceSample") | ||||||
.field("name", &self.name()) | ||||||
.field("signature", &self.signature) | ||||||
.field("accumulator", &"<FUNC>") | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We probably don't need the |
||||||
.finish() | ||||||
} | ||||||
} | ||||||
|
||||||
impl Default for CovarianceSample { | ||||||
fn default() -> Self { | ||||||
Self::new() | ||||||
} | ||||||
} | ||||||
|
||||||
impl CovarianceSample { | ||||||
pub fn new() -> Self { | ||||||
Self { | ||||||
aliases: vec![String::from("covar_samp")], | ||||||
signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable), | ||||||
} | ||||||
} | ||||||
} | ||||||
|
||||||
impl AggregateUDFImpl for CovarianceSample { | ||||||
fn as_any(&self) -> &dyn std::any::Any { | ||||||
self | ||||||
} | ||||||
|
||||||
fn name(&self) -> &str { | ||||||
"covar" | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. A minor nitpick here is that the name of the struct is CovarianceSample but the name is It would be better in my opinion of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I rename it to |
||||||
} | ||||||
|
||||||
fn signature(&self) -> &Signature { | ||||||
&self.signature | ||||||
} | ||||||
|
||||||
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { | ||||||
if !arg_types[0].is_numeric() { | ||||||
return plan_err!("Covariance requires numeric input types"); | ||||||
} | ||||||
|
||||||
Ok(DataType::Float64) | ||||||
} | ||||||
|
||||||
fn state_fields( | ||||||
&self, | ||||||
name: &str, | ||||||
_value_type: DataType, | ||||||
_ordering_fields: Vec<Field>, | ||||||
) -> Result<Vec<Field>> { | ||||||
Ok(vec![ | ||||||
Field::new(format_state_name(name, "count"), DataType::UInt64, true), | ||||||
Field::new(format_state_name(name, "mean1"), DataType::Float64, true), | ||||||
Field::new(format_state_name(name, "mean2"), DataType::Float64, true), | ||||||
Field::new( | ||||||
format_state_name(name, "algo_const"), | ||||||
DataType::Float64, | ||||||
true, | ||||||
), | ||||||
]) | ||||||
} | ||||||
|
||||||
fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { | ||||||
Ok(Box::new(CovarianceAccumulator::try_new(StatsType::Sample)?)) | ||||||
} | ||||||
|
||||||
fn aliases(&self) -> &[String] { | ||||||
&self.aliases | ||||||
} | ||||||
} | ||||||
|
||||||
/// An accumulator to compute covariance | ||||||
/// The algrithm used is an online implementation and numerically stable. It is derived from the following paper | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
/// for calculating variance: | ||||||
/// Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products". | ||||||
/// Technometrics. 4 (3): 419–420. doi:10.2307/1266577. JSTOR 1266577. | ||||||
/// | ||||||
/// The algorithm has been analyzed here: | ||||||
/// Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances". | ||||||
/// Journal of the American Statistical Association. 69 (348): 859–866. doi:10.2307/2286154. JSTOR 2286154. | ||||||
/// | ||||||
/// Though it is not covered in the original paper but is based on the same idea, as a result the algorithm is online, | ||||||
/// parallelizable and numerically stable. | ||||||
|
||||||
#[derive(Debug)] | ||||||
pub struct CovarianceAccumulator { | ||||||
algo_const: f64, | ||||||
mean1: f64, | ||||||
mean2: f64, | ||||||
count: u64, | ||||||
stats_type: StatsType, | ||||||
} | ||||||
|
||||||
impl CovarianceAccumulator { | ||||||
/// Creates a new `CovarianceAccumulator` | ||||||
pub fn try_new(s_type: StatsType) -> Result<Self> { | ||||||
Ok(Self { | ||||||
algo_const: 0_f64, | ||||||
mean1: 0_f64, | ||||||
mean2: 0_f64, | ||||||
count: 0_u64, | ||||||
stats_type: s_type, | ||||||
}) | ||||||
} | ||||||
|
||||||
pub fn get_count(&self) -> u64 { | ||||||
self.count | ||||||
} | ||||||
|
||||||
pub fn get_mean1(&self) -> f64 { | ||||||
self.mean1 | ||||||
} | ||||||
|
||||||
pub fn get_mean2(&self) -> f64 { | ||||||
self.mean2 | ||||||
} | ||||||
|
||||||
pub fn get_algo_const(&self) -> f64 { | ||||||
self.algo_const | ||||||
} | ||||||
} | ||||||
|
||||||
impl Accumulator for CovarianceAccumulator { | ||||||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||||||
Ok(vec![ | ||||||
ScalarValue::from(self.count), | ||||||
ScalarValue::from(self.mean1), | ||||||
ScalarValue::from(self.mean2), | ||||||
ScalarValue::from(self.algo_const), | ||||||
]) | ||||||
} | ||||||
|
||||||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||||||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||||||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||||||
|
||||||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||||||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||||||
|
||||||
for i in 0..values1.len() { | ||||||
let value1 = if values1.is_valid(i) { | ||||||
arr1.next() | ||||||
} else { | ||||||
None | ||||||
}; | ||||||
let value2 = if values2.is_valid(i) { | ||||||
arr2.next() | ||||||
} else { | ||||||
None | ||||||
}; | ||||||
|
||||||
if value1.is_none() || value2.is_none() { | ||||||
continue; | ||||||
} | ||||||
|
||||||
let value1 = unwrap_or_internal_err!(value1); | ||||||
let value2 = unwrap_or_internal_err!(value2); | ||||||
let new_count = self.count + 1; | ||||||
let delta1 = value1 - self.mean1; | ||||||
let new_mean1 = delta1 / new_count as f64 + self.mean1; | ||||||
let delta2 = value2 - self.mean2; | ||||||
let new_mean2 = delta2 / new_count as f64 + self.mean2; | ||||||
let new_c = delta1 * (value2 - new_mean2) + self.algo_const; | ||||||
|
||||||
self.count += 1; | ||||||
self.mean1 = new_mean1; | ||||||
self.mean2 = new_mean2; | ||||||
self.algo_const = new_c; | ||||||
} | ||||||
|
||||||
Ok(()) | ||||||
} | ||||||
|
||||||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||||||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||||||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||||||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||||||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||||||
|
||||||
for i in 0..values1.len() { | ||||||
let value1 = if values1.is_valid(i) { | ||||||
arr1.next() | ||||||
} else { | ||||||
None | ||||||
}; | ||||||
let value2 = if values2.is_valid(i) { | ||||||
arr2.next() | ||||||
} else { | ||||||
None | ||||||
}; | ||||||
|
||||||
if value1.is_none() || value2.is_none() { | ||||||
continue; | ||||||
} | ||||||
|
||||||
let value1 = unwrap_or_internal_err!(value1); | ||||||
let value2 = unwrap_or_internal_err!(value2); | ||||||
|
||||||
let new_count = self.count - 1; | ||||||
let delta1 = self.mean1 - value1; | ||||||
let new_mean1 = delta1 / new_count as f64 + self.mean1; | ||||||
let delta2 = self.mean2 - value2; | ||||||
let new_mean2 = delta2 / new_count as f64 + self.mean2; | ||||||
let new_c = self.algo_const - delta1 * (new_mean2 - value2); | ||||||
|
||||||
self.count -= 1; | ||||||
self.mean1 = new_mean1; | ||||||
self.mean2 = new_mean2; | ||||||
self.algo_const = new_c; | ||||||
} | ||||||
|
||||||
Ok(()) | ||||||
} | ||||||
|
||||||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||||||
let counts = downcast_value!(states[0], UInt64Array); | ||||||
let means1 = downcast_value!(states[1], Float64Array); | ||||||
let means2 = downcast_value!(states[2], Float64Array); | ||||||
let cs = downcast_value!(states[3], Float64Array); | ||||||
|
||||||
for i in 0..counts.len() { | ||||||
let c = counts.value(i); | ||||||
if c == 0_u64 { | ||||||
continue; | ||||||
} | ||||||
let new_count = self.count + c; | ||||||
let new_mean1 = self.mean1 * self.count as f64 / new_count as f64 | ||||||
+ means1.value(i) * c as f64 / new_count as f64; | ||||||
let new_mean2 = self.mean2 * self.count as f64 / new_count as f64 | ||||||
+ means2.value(i) * c as f64 / new_count as f64; | ||||||
let delta1 = self.mean1 - means1.value(i); | ||||||
let delta2 = self.mean2 - means2.value(i); | ||||||
let new_c = self.algo_const | ||||||
+ cs.value(i) | ||||||
+ delta1 * delta2 * self.count as f64 * c as f64 / new_count as f64; | ||||||
|
||||||
self.count = new_count; | ||||||
self.mean1 = new_mean1; | ||||||
self.mean2 = new_mean2; | ||||||
self.algo_const = new_c; | ||||||
} | ||||||
Ok(()) | ||||||
} | ||||||
|
||||||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||||||
let count = match self.stats_type { | ||||||
StatsType::Population => self.count, | ||||||
StatsType::Sample => { | ||||||
if self.count > 0 { | ||||||
self.count - 1 | ||||||
} else { | ||||||
self.count | ||||||
} | ||||||
} | ||||||
}; | ||||||
|
||||||
if count == 0 { | ||||||
Ok(ScalarValue::Float64(None)) | ||||||
} else { | ||||||
Ok(ScalarValue::Float64(Some(self.algo_const / count as f64))) | ||||||
} | ||||||
} | ||||||
|
||||||
fn size(&self) -> usize { | ||||||
std::mem::size_of_val(self) | ||||||
} | ||||||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The point of this PR is to remove this variant and make it a user defined aggregate